博碩士論文 976201017 完整後設資料紀錄

DC 欄位 語言
DC.contributor大氣物理研究所zh_TW
DC.creator唐玉霜zh_TW
DC.creatorYu-shuang Tangen_US
dc.date.accessioned2010-7-21T07:39:07Z
dc.date.available2010-7-21T07:39:07Z
dc.date.issued2010
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=976201017
dc.contributor.department大氣物理研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract莫拉克颱風侵襲期間,在8月8日下半天有一條長生命期、東西走向對流雨帶,在台灣西南部南北推移,並且有數個強對流胞不斷在雨帶中生成、快速向陸地移動。本研究利用馬公和七股兩個雷達進行雙都卜勒合成風場分析,建構出雨帶內風場的三維結構,分析時間為1754-1831LST。合成風場顯示,颱風環流的西北風和西南氣流在台灣海峽造成輻合和上升運動,進而形成強對流雨帶。   在本研究中定義「熱塔」為在10公里高度等高面上,其回波大於25dBZ的對流胞,並比較1809LST和1831LST兩個不同時期熱塔的特徵。1809LST的熱塔特徵與典型雨帶內對流胞的垂直概念結構一致,其雷達回波略為向颱風中心外側傾斜,25dBZ的回波垂直高度可達15公里,最大上升氣流強度接近20m/s。在對流雨帶中的對流胞發展和移動,常會伴隨強風速(>30m/s)和正渦度,經由計算渦度收支,發現熱塔內的強上升運動,會增強對流內的正渦度,進一步增強噴流強度。對流胞的強上升運動增強雨帶的中低層噴流強度,會加速對流胞往陸地輸送,但此噴流受到台灣地形的阻擋,加強山區的上升運動,不但造成很強的降水,還使得總降雨量在山區累積,形成重大災害。   而從馬公雷達偏極化參數得到的雲物理垂直結構可知,對流內的強上升氣流,可將過冷水帶至較高的位置,在中高層有冰水混相,並且在熱塔最高層產生大量冰晶,表示在中高層以上有冰過程的產生,例如澱積、淞化等現象。比較莫拉克颱風(2009)和辛樂克颱風(2008)熱塔個案後,發現前者的對流發展高度較深,強度也較強,且對流胞內蘊含非常大量的水滴。在熱塔中大量的潛熱釋放,透過雲動力的機制,對於維持熱塔生命期和噴流有很大的幫助。 zh_TW
dc.description.abstractOn August 8, 2009, a few strong west-east oriented rain bands associated with Typhoon Morakot formed in southwestern Taiwan. Many deep convection cells were embedded in these rain bands and moved toward the island very quickly. We carried out dual-doppler analysis of Chigu and Magung to retrieve 3-D wind field from 0954 to 1031UTC. The 3-D synthesis wind field revealed that the typhoon northwest wind circulation in Taiwan Strait encountered the southwestern flow to cause a strong convergence zone and form the rain band. The three dimensional reflectivity and flow structures are similar to the conceptual model of hurricane rain band. A low level jet (>30m/s) 10-30km wide, length >100km associated with this rain band.   The hot tower embedded in the rain band is defined by a threshold of reflectivity (dBZ >25) at 10 km height, and compare the features of the hot towers in different stage (1809LST and 1831UTC). The reflectivity pattern was slightly tilting southward and the reflectivity contour of 25dBZ reached 15km. The updraft of the hot tower was near 20m/s. When the cell moved along the rain band, the cell usually accompanied with the meso-γ-scale jet streak (>40m/s, 2-3km width, 5-20km length) and the positive vertical vorticity. Through the vorticity budget, we found the updraft play an important role to enhance the vertical vorticity and the strong jet streak. Along the jet many deep convection cells (hot towers) were moving quickly. Because the jet was blocked by the mountains in southern Taiwan, the sloping updrafts were enhanced to induce heavy rainfall. The prolonged stay of this devastating rain band caused the high accumulation of rain. We analyzed the distributions of the polarimetric parameters from Magong radar to reveal microphysical structure in the hot tower. The results show that many little supercool drops were carried by the strong updraft into the tower. The low ZDR and KDP indicated the ice particles in the upper level of tower. The lower ρHV proved the mixed phase near 7-9 km height. After compared the hot towers between typhoon Morakot (2009) and typhoon Sinlaku (2008), the former not only had deeper and stronger convection, but also had larger number of raindrops. The huge amount latent heat was released in whole tower, and through cloud dynamic mechanism, it was helpful for maintaining lifetime of hot tower and low level jet. en_US
DC.subject偏極化雷達zh_TW
DC.subject熱塔zh_TW
DC.subject莫拉克颱風zh_TW
DC.subjectpolarimeteric radaren_US
DC.subjecthot toweren_US
DC.subjecttyphoon Morakot(2009)en_US
DC.title2009 莫拉克颱風雷達觀測中尺度雨帶特性研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleThe mesoscale characteristics of rainband from radar analyses: typhoon Morakot(2009).en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明