dc.description.abstract | Abstract
To our knowledge, Cells in our bodies are surrounded by 3D environment which is mainly composed of extracellular matrix (ECM). An artificial 3D cell culture support in 3D is often called a scaffold. In our lab, we used microfluidic channel to make a uniform tissue scaffold, and use this scaffold to cell culture. Then, we studied and analyzed the phenomenon of cell culture in 3D space of different pore size and hardness. However, we hope to get smaller pore size scaffold (<50μm). But, in the bubble system, to make smaller bubbles, the coarsening problem will get serious [1]. Therefor, we tried to use the emulsion system (oil in water) to solve coarsening phenomenon. However, in the microfluidic channel system, we used PDMS microfluidic chip channel surface is hydrophobic, which couldn’t create a stable emulsion. We must modify surface with hydrophilic property, let microfluidic channel could stable and long-term manufacturing emulsion. In addition, the state is jetting mode when make emulsion in high generate frequency. So the collected oil fraction is very low, but we don’t want the low oil fraction emulsion (in cultured cells, the conditions required for scaffold is best to more than 64%). In order to improve the oil fraction, we successfully made a "comb" shape microfluidic channel and effectively increased the oil fraction from 20% to more than 64%. In the course of the experiment, there are some new findings, such as: 1. The critical boundary condition of emulsion separation flow rate is Vcomb / Vmain = 0.58. 2. The application of circuit simulation in microfluidic channels, we may fast and roughly to get simulation results, and help the design of microfluidic channel to reduce excessive experiment test.
| en_US |