dc.description.abstract | In the past two decades, a number of near-fault ground motions have been recorded in major earthquakes, such as the 1995 Japan Kobe earthquake and the 1999 Chi-Chi earthquake. Near-fault ground motions comprise long-period pulses, which is unique as compared to far-fault ground motions. Numbers of bridges along the Chelungpu fault suffered damage, even collapsed, during the Chi-Chi earthquake. Those can be attributed to not only the strong ground motions but also ground dislocation. How to design a bridge crossing a fault is still an open issue nowadays because there is no a feasible computation technology. Therefore, it is impossible to determine the type of bridges when they span an active fault.
The Vector Form Intrinsic Finite Element (VFIFE) is superior in managing the engineering problems with material nonlinearity, discontinuity, large deformation, large displacement and arbitrary rigid body motions of deformable bodies. The VFIFE is thus selected to be the analysis method in this study. Four types of bridges, including a six-span simply-supported bridge, a three-span-continuous bridge, a three-span-rigid bridge and a six-span-rigid bridge, are analyzed to predict the failure situation under near-fault ground motions with dislocation. Through a serious of parametric studies, the failure modes are demonstrated for the four types of bridges. Importantly, the failure mechanism of all the bridges is clarified so as to compare the feasibility of four types of bridges when designing bridges crossing a fault. The simulation results should be applied to practical implementation.
| en_US |