dc.description.abstract | The research topics that effect of ion implantation on nickel alloy silicide. Reportedly, the thermal stability of Ni silicides was improved by the introduction of Pt atom. For comparison, the Ni-Pt /Si samples were also prepared at the same conditions. Frist, one of this study investigates the formation of Ni-Ti silicide on preamorphization implanted Si ( PAI-Si). The system of Ni-Ti silicide formed on the Si substrate, the NiSi2 was the only silicide phase. This study proposes a mechanism that Ti-just interface, effectively hindering the Ni atom diffuse into Si substrate. Furthermore, according to the theorems of thermodynamics, a flat (100) interface was formed at high temperature. In addition, the Ni-Ti silicide formed on PAI-Si substrate, the NiSi2 was formed at low temperature. The NiSi2 phase formed completely through the amorphous silicon and stopped at the crystalline substrate. It did not penetrate further due to the absence of a driving force, which, in the case of reaction with amorphous silicon, is provided by an excess free. However, the rough interfaces of amorphous silicon and crystalline silicon with ion implantation of Xe, which will affect the growth of nickel disilicide. For the Ni-Ti silicide formed on PAI-Si substrate, not only larger the low-resistance nickel silicide process temperature but also improving the Schottky barrier height.
On the other hand, the formation of Ni-Yb alloy silicides on Si substrate has been systematically investigated in this study. The presence of Yb atoms can form with a low work function of Ni-Yb silicides and suppress the agglomeration of silicide films at high temperature. In addition, the process of carbon ion implantation in the Ni-Yb alloy films, the carbon is not soluble in the silicide. It is likely that carbon segregates to the silicide/ Si interfaces to improve the thermal stability of the film. If we can combine the process of Ni-Yb alloy silicides and carbon ion implantation we will be able to effectively improve the silicide in the component reliability.
| en_US |