博碩士論文 985202049 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator劉宣延zh_TW
DC.creatorHsuan-yen Liuen_US
dc.date.accessioned2011-7-26T07:39:07Z
dc.date.available2011-7-26T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985202049
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract性別辨識是近年廣泛發展的一個領域,若能在日常生活中應用性別辨識,如:智慧型安全監控系統、個人化機器人與顧客和行人統計系統等,生活將會更方便且安全。 長久以來的性別辨識研究多以人臉、聲音、姿態等為基礎,其中以姿態為基礎的性別辨識為有效率且可行的,在側面拍攝角度為〖90〗^°且一般穿著時有不錯的表現,但隨著姿態影像會因視角變化、穿著變化與攜帶背包等問題而改變,當中更伴隨姿態週期取得不易,以至於辨識率大幅降低。因此本論文提出一個以Gait Energy Image(GEI)為基礎,在GEI上擷取區域紋理特徵後,以Support Vector Machine(SVM)為分類器的性別辨識系統架構,以提升其辨識率。 首先將攝影機所拍攝之影片,經由姿態週期計算方法,取得姿態能量影像(GEI),在GEI上以特徵擷取Local Directional Pattern (LDP)或Local Binary Pattern (LBP)計算紋理特徵,並以切割區塊的方式記錄局部性的性別特徵,藉由每個區塊中的統計特徵分布並串接起來成為一個特徵向量,以代表男女性別,之後再使用SVM分類器進行性別辨識。 本文探討此架構在監控系統中之單一角度辨識率、穿著變化、攜帶背包與訓練樣本數量對辨識結果的影響,並實驗在單一角度訓練,測試其他角度的視角變化情形,實驗結果顯示,這個架構對性別辨識,是穩定且有效的。 zh_TW
dc.description.abstractRecently, gender classification is widely developed in many commercial systems in our daily life. For examples, the statistical data collection module for consumers’ genders and ages is embedded into an advertisement system. An intelligent surveillance algorithm analyzes the human gender and activities. Many gender classification algorithms proposed in literatures use the face, voice or gait features. However, face and voice features need a close contact with people. Human gaits are the valid feature for gender classification in a long distance. The main challenge for gait-based gender classification is the view angle from cameras due to the non-rigid body. In addition to view angles, clothing, shoes, and carrying conditions also reduce the performance. In this work, a gait energy image (GEI)-based algorithm is proposed for gender classification. The GEIs are constructed from the aligned gait silhouettes. The gait cycles are first estimated and the silhouettes of gaits are aligned from the input video sequences. After the pre-processing, gait cycle estimation, and silhouette alignment, GEIs are constructed and separated into several regions. Next, local texture features, local binary pattern (LBP) or local directional pattern (LDP), are extracted from the separated GEIs’ regions. A feature vector concatenating the LBP histograms of small regions are extracted. An SVM-based classifier is adopted for gender classification. In order to show the performance of the proposed method, several conditions, including various view angles, clothing variations, and carrying bags, are conducted in the experiments. Instead of the training and testing images both in a 90-degree angle, test images in various view angles are classified using the training images in a 90-degree angle. Experimental results are demonstrated and high recognition rates are achieved. en_US
DC.subject姿態zh_TW
DC.subject視角zh_TW
DC.subject穿著變化zh_TW
DC.subject攜帶背包zh_TW
DC.subject姿態能量影像zh_TW
DC.subject性別辨識zh_TW
DC.subject區域二元特徵zh_TW
DC.subject區域方向性特徵zh_TW
DC.subjectgender classificationen_US
DC.subjectgaiten_US
DC.subjectview angleen_US
DC.subjectclothingen_US
DC.subjectcarry conditionen_US
DC.subjectGait energy imageen_US
DC.subjectLocal binary patternen_US
DC.subjectLocal directional patternen_US
DC.title在姿態能量影像中使用區域紋理特徵之性別辨識zh_TW
dc.language.isozh-TWzh-TW
DC.titleGender Classification Using Local Texture Features from Gait Energy Imagesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明