博碩士論文 985202052 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator程凱驛zh_TW
DC.creatorKai-yi Chengen_US
dc.date.accessioned2011-8-18T07:39:07Z
dc.date.available2011-8-18T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985202052
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究提出針對固定式道路監控攝影機所拍攝畫面之分析工具,用於獲取道路上的交通資訊,以對車流進行估算。本論文主要分為兩個部分:第一部分為模型訓練機制,我們首先對畫面內容進行去背景,並利用形態學方法得到可能的車輛遮罩,再對遮罩面積進行統計分析後,取得畫面中可能之不同種類車輛大小資訊,並依此收集不同種類車輛之樣本影像。在每個區域自動取得定量之訓練樣本後,我們以支援向量機 (Support Vector Machine)搭配隱式型態模式(Implicit Shape Model)的技術,對資料進行訓練及相關處理,此自適應演算方式可以大幅減少模型建置的人力需求。第二部分為辨識機制,我們使用訓練完成的SVM對特徵點進行分類過濾,再利用訓練完成的ISM對場景中的車輛影像進行辨識,協助解決車輛影像交疊問題,同時提升車輛分類準確度。實驗結果顯示這個機制確實能夠適應不同的交通場景,有效對車輛進行辨識,達成車輛計數或車流估算的目的。 zh_TW
dc.description.abstractThis research presents a framework of analyzing the traffic information in the surveillance videos from the static roadside cameras to assist solving the vehicle occlusion problem for more accurate traffic flow estimation and vehicle classification. The proposed scheme consists of two main parts. The first part is a model training mechanism, in which the traffic and vehicle information will be collected from the characteristics of masks. Their statistics are employed to automatically establish the models of scene, including the implicit shape model of vehicles and the support vector machine of feature points. It should be noted that the proposed self-training mechanism can reduce a great deal of human efforts. The second part adopts the established implicit shape model and support vector machine to recognize vehicles. Each feature point is classified into a vehicle type and processed by the corresponding ISM. Experimental results demonstrate that the proposed scheme can deal with the scenes with different characteristics in the traffic surveillance videos. en_US
DC.subject車輛zh_TW
DC.subjectISMzh_TW
DC.subjectSVMzh_TW
DC.subjectSURFzh_TW
DC.subject自我訓練zh_TW
DC.subjectSelf-Trainingen_US
DC.subjectVehicleen_US
DC.subjectSVMen_US
DC.subjectISMen_US
DC.subjectSURFen_US
DC.title基於視訊場景資料蒐集與訓練之自適應車流估計機制zh_TW
dc.language.isozh-TWzh-TW
DC.titleAn Adaptive Traffic Flow Analysis Scheme Based on Scene-Specific Sample Collection and Trainingen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明