博碩士論文 985203005 完整後設資料紀錄

DC 欄位 語言
DC.contributor通訊工程學系zh_TW
DC.creator施博淦zh_TW
DC.creatorPo-kuan Shihen_US
dc.date.accessioned2011-8-31T07:39:07Z
dc.date.available2011-8-31T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985203005
dc.contributor.department通訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在訊號辨識的領域裡,自動訊號辨識是一門古典的題目。這項技術較常應用在當傳送訊號具有可適性時的情況。針對通過非AWGN通道的訊號進行辨識的工作至今仍是一項困難的挑戰,高階統計法是最常被設計應用於針對此狀況的辨識技術。我們使用高階統計參數來估測通道係數,並使用累計量來設計一個多階層決策架構。我們將討論在靜態和時變通道模型下的演算法差異,並比較在不同接收條件下的辨識率。 zh_TW
dc.description.abstractAutomatic modulation classification (AMC) is a classical topic in signal classification field. This technique is often used when the transmitted signals are adaptive. So far, recognition of signals passing through non-AWGN channels is still a hard task. High-order statistics is the most adopted method of being designed for classification in non-AWGN situations. We use high-order statistical parameters to obtain estimated channel coefficients and design a multiple-layered decision structure with cumulants. We will discuss the difference of algorithms for static and time-varying channel models, and compare the classification rate in different receiving conditions. en_US
DC.subject特徵法自動調變辨識zh_TW
DC.subject多路徑衰減通道zh_TW
DC.subject自回歸通道模型zh_TW
DC.subject統計量zh_TW
DC.subject高 階統計值zh_TW
DC.subjectfeature-based AMC (FB-AMC)en_US
DC.subjectmultipath fading channelen_US
DC.subjectautoregressive channel modelen_US
DC.subjecthigh-order statisticsen_US
DC.subjectcumulanten_US
DC.title應用高階統計之特徵法自動調變辨識技術zh_TW
dc.language.isozh-TWzh-TW
DC.titleA Feature-Based Automatic Modulation Classification Technique Using High-Order Statisticsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明