DC 欄位 |
值 |
語言 |
DC.contributor | 通訊工程學系 | zh_TW |
DC.creator | 施博淦 | zh_TW |
DC.creator | Po-kuan Shih | en_US |
dc.date.accessioned | 2011-8-31T07:39:07Z | |
dc.date.available | 2011-8-31T07:39:07Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985203005 | |
dc.contributor.department | 通訊工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在訊號辨識的領域裡,自動訊號辨識是一門古典的題目。這項技術較常應用在當傳送訊號具有可適性時的情況。針對通過非AWGN通道的訊號進行辨識的工作至今仍是一項困難的挑戰,高階統計法是最常被設計應用於針對此狀況的辨識技術。我們使用高階統計參數來估測通道係數,並使用累計量來設計一個多階層決策架構。我們將討論在靜態和時變通道模型下的演算法差異,並比較在不同接收條件下的辨識率。
| zh_TW |
dc.description.abstract | Automatic modulation classification (AMC) is a classical topic in signal classification field. This technique is often used when the transmitted signals are adaptive. So far, recognition of signals passing through non-AWGN channels is still a hard task. High-order statistics is the most adopted method of being designed for classification in non-AWGN situations. We use high-order statistical parameters to obtain estimated channel coefficients and design a multiple-layered decision structure with cumulants. We will discuss the difference of algorithms for static and time-varying channel models, and compare the classification rate in different receiving conditions.
| en_US |
DC.subject | 特徵法自動調變辨識 | zh_TW |
DC.subject | 多路徑衰減通道 | zh_TW |
DC.subject | 自回歸通道模型 | zh_TW |
DC.subject | 統計量 | zh_TW |
DC.subject | 高 階統計值 | zh_TW |
DC.subject | feature-based AMC (FB-AMC) | en_US |
DC.subject | multipath fading channel | en_US |
DC.subject | autoregressive channel model | en_US |
DC.subject | high-order statistics | en_US |
DC.subject | cumulant | en_US |
DC.title | 應用高階統計之特徵法自動調變辨識技術 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | A Feature-Based Automatic Modulation Classification Technique Using High-Order Statistics | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |