博碩士論文 985203055 完整後設資料紀錄

DC 欄位 語言
DC.contributor通訊工程學系zh_TW
DC.creator江尊至zh_TW
DC.creatorJiang Zunjhihen_US
dc.date.accessioned2011-7-26T07:39:07Z
dc.date.available2011-7-26T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985203055
dc.contributor.department通訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract心血管疾病為全世界頭號死因,造成中等收入的開發中國家極大負擔,在行動電話上技術日益進步且每一人擁有兩支手機,故較可行的解決方案是利用手機進行記錄,再傳送並提供具有專業知識者進行診斷,不過又遇到了採集人員專業或經驗不夠之瓶頸,造成未按照標準流程所採集到的數據不堪使用。 麻省理工PhysioNet 團體每年提供了心電圖資料,並且舉辦挑戰以促進各領域學者們一同解決心電圖機器判讀的難題。以往採取頻域分析以及多種資料處理,難保信息失真以及效率不佳,故採取時間序列模型HMM,並且以極少加工之資料來進行分析。 本論文使用心電圖訓練HMM 模型,針對原始心電圖資料序列進行機器學習,希望能判讀一段10 秒鐘所測得的12 導程5000 個數值心電圖,是否按照標準流程所量得。由於單獨使用時準確率著實有限(80.7%),本論文又再結合Adaboost 決策理論合併HMM 分類器之間的意見,得到最佳答案,順利將判讀成功率頓時提高不少(88.1%)。 而改進的著手點可從判讀成功率跟判讀效率兩個方面進行,以求往後面對其它議題也能獲得絕佳組合方案。 zh_TW
dc.description.abstractCardiovascular disease is the No. 1 cause of death worldwide, resulting in middle-income developing countries a great burden. The mobile phone technology advances recently, it is more feasible solution is to use their phones to record, re-transmission and provide who have expertise in diagnosis. But collection staff encountered a bottleneck in lack of experience of, resulting not in accordance with standard procedures of the collected data will be unusable. PhysioNet provides ECG data every year, and contested to promote together scholars in various fields to solve the problem of interpretation of ECG machines. Taking variety of analyzed in frequency domain, and data processing, there is no guarantee of information distortion and inefficient. So we take the time series model - HMM, and with minimal processing of data for analysis. This paper training the HMM using ECG, ECG data for the original sequence of machine learning, hoping to interpret the measured period of 10 seconds of 12 lead ECG 5000 value, whether the amount was in accordance with standard procedures. Accuracy when used alone as really limited (80.7%), this paper again merge HMM combining Adaboost classifier decision theory between the views, the best answer, successful interpretation of the success rate will suddenly increase a lot (88.1%). To improve the detection accuracy and efficiency from two-pronged approach. We wish to face other issues and get a proper combination. en_US
DC.subject心電圖偵測zh_TW
DC.subjectAdaboost-basedzh_TW
DC.subjectHMMzh_TW
DC.subjectAdaboost-HMMzh_TW
DC.subjectHMMen_US
DC.subjectECG detectionen_US
DC.subjectAdaboost-HMMen_US
DC.subjectAdaboost-baseden_US
DC.title基於Adaboost-HMM 偵測異常心電圖zh_TW
dc.language.isozh-TWzh-TW
DC.titleInadequate ECGs Detection Based on Adaboost-HMMen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明