DC 欄位 |
值 |
語言 |
DC.contributor | 軟體工程研究所 | zh_TW |
DC.creator | 張懷倫 | zh_TW |
DC.creator | Huai-lun Chang | en_US |
dc.date.accessioned | 2011-7-21T07:39:07Z | |
dc.date.available | 2011-7-21T07:39:07Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985205004 | |
dc.contributor.department | 軟體工程研究所 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在目前眾多的研究議題中,特徵選取(Variable and feature selection)已經是一個越來越令人關注的議題。尤其是當我們收集樣本的特徵集(Feature sets)成千上百的增加的時候,一個好的特徵選取方法可以使得結果令人滿意。
本論文提出了一個概念,此概念是嘗詴去結合專家意見(Expert recommendation)與機器學習演算法(Machine Learning Algorithm)後,創造出一種混合型的特徵選取方法(Novel feature selection methods),並且使用預測財務危機公司(Financial Distressed Prediction,簡稱FDP)此問題當作案例做為實驗證實。
本論文的貢獻在於對於特徵選取這個議題而言,我們提供了兩個新的方法:Advanced wrapper method & Mix of Expert and Machine(MEM)。而這兩個方法對於應用在非結構化的商業問題上(unstructured nature of the business problems)有著比貣以往的方法更佳的結果-擁有更勝於以往的預測準確率以及為數少量的推薦特徵集。
| zh_TW |
dc.description.abstract | Variable and feature selection is an important issue in plenty of issues, especially feature sets is growing up violently. A good variable and feature selection will have bearing on performance of result.
In this paper, we apply a new concept that combines expert recommendation and machine learning algorithm to create a novel feature selection, and utilize the financial distress prediction problem as a study case to prove our idea.
We apply two methods that Advanced wrapper method & mixed of expert and machine (MEM) to applicate in nonstructed business problem and believe this proposed methods be better performance than original methods included predictor accuracy and few feature set.
| en_US |
DC.subject | 遺傳演算法 | zh_TW |
DC.subject | 財務危機預測 | zh_TW |
DC.subject | 特徵選取 | zh_TW |
DC.subject | genetic algorithm | en_US |
DC.subject | wrapper method | en_US |
DC.subject | Financial Distressed Prediction | en_US |
DC.subject | Feature Selection | en_US |
DC.title | 結合領域知識與機器運算之新的特徵選取方法: 應用於財務危機預警預測之問題 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Novel feature selection methods to Financial Distressed Prediction problem | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |