博碩士論文 985205004 完整後設資料紀錄

DC 欄位 語言
DC.contributor軟體工程研究所zh_TW
DC.creator張懷倫zh_TW
DC.creatorHuai-lun Changen_US
dc.date.accessioned2011-7-21T07:39:07Z
dc.date.available2011-7-21T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=985205004
dc.contributor.department軟體工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在目前眾多的研究議題中,特徵選取(Variable and feature selection)已經是一個越來越令人關注的議題。尤其是當我們收集樣本的特徵集(Feature sets)成千上百的增加的時候,一個好的特徵選取方法可以使得結果令人滿意。 本論文提出了一個概念,此概念是嘗詴去結合專家意見(Expert recommendation)與機器學習演算法(Machine Learning Algorithm)後,創造出一種混合型的特徵選取方法(Novel feature selection methods),並且使用預測財務危機公司(Financial Distressed Prediction,簡稱FDP)此問題當作案例做為實驗證實。 本論文的貢獻在於對於特徵選取這個議題而言,我們提供了兩個新的方法:Advanced wrapper method & Mix of Expert and Machine(MEM)。而這兩個方法對於應用在非結構化的商業問題上(unstructured nature of the business problems)有著比貣以往的方法更佳的結果-擁有更勝於以往的預測準確率以及為數少量的推薦特徵集。 zh_TW
dc.description.abstractVariable and feature selection is an important issue in plenty of issues, especially feature sets is growing up violently. A good variable and feature selection will have bearing on performance of result. In this paper, we apply a new concept that combines expert recommendation and machine learning algorithm to create a novel feature selection, and utilize the financial distress prediction problem as a study case to prove our idea. We apply two methods that Advanced wrapper method & mixed of expert and machine (MEM) to applicate in nonstructed business problem and believe this proposed methods be better performance than original methods included predictor accuracy and few feature set. en_US
DC.subject遺傳演算法zh_TW
DC.subject財務危機預測zh_TW
DC.subject特徵選取zh_TW
DC.subjectgenetic algorithmen_US
DC.subjectwrapper methoden_US
DC.subjectFinancial Distressed Predictionen_US
DC.subjectFeature Selectionen_US
DC.title結合領域知識與機器運算之新的特徵選取方法: 應用於財務危機預警預測之問題zh_TW
dc.language.isozh-TWzh-TW
DC.titleNovel feature selection methods to Financial Distressed Prediction problemen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明