DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 賴俊儒 | zh_TW |
DC.creator | CHun-Ju Lai | en_US |
dc.date.accessioned | 2013-6-24T07:39:07Z | |
dc.date.available | 2013-6-24T07:39:07Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=992201018 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 令S^2_{x;n}, S^2_{y;n} 及S^2_{z;n} 分表取自N(x; sigma ^2_x), N(y; sigma ^2_y) 及N(z; sigma ^2_z )之樣本變異數.當 n 為不小於 2 之整數時, 謝宗翰(2012)計算P(S^2_{x;n} > S^2_{y;n}) 之值, 當 n 為不小於 3 之奇數時, 謝宗翰(2012)計算P(S^2_{x;n} > S^2_{y;n} > S^2_{z;n}) 之值. 本文用不同的方式來計算P(S^2_{x;n} > S^2_{y;n}) 及P(S^2_{x;n} > S^2_{y;n} > S^2_{z;n}), 其結果均適用於不小於 2 之整數 n . | zh_TW |
dc.description.abstract | Let S^2_{x;n}, S^2_{y;n} and S^2_{z;n} denote sample variances obtained from three independent normal distributions. Each sample has sample size n. Shieh(2012) calculated P(S^2_{x;n} > S^2_{y;n}) when n >= 2 and P(S^2_{x;n} > S^2_{y;n} > S^2_{z;n)} when n >= 3 is odd. In this paper, we calculate P(S^2_{x;n} > S^2_{y;n}) and P(S^2_{x;n} > S^2_{y;n} > S^2_{z;n}) by dierent methods and the results are valid for n 2. | en_US |
DC.subject | 獨立常態 | zh_TW |
DC.subject | 樣本變異數順序 | zh_TW |
DC.subject | 機率 | zh_TW |
DC.title | 三獨立常態樣本變異數間之順序的機率(III) | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Probability of orders between three independent normal sample variances(III) | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |