DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 張峯溥 | zh_TW |
DC.creator | Zhang-Feng Pu | en_US |
dc.date.accessioned | 2013-7-2T07:39:07Z | |
dc.date.available | 2013-7-2T07:39:07Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=992201021 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 令S_{x,n}^2,S_{y,n}^2及S_{z,n}^2分表取自三獨立常態分布N({mu}_x,{sigma}_x^2),N({mu}_y,{sigma}_y^2)及N({mu}_z,{sigma}_z^2)之樣本變異數.當n為不小於2之整數時謝宗翰(2012)計算p(S_{x,n}^2>S_{y,n}^2)之值.當n為不小於3之奇數時謝宗翰(2012)計算P(S_{x,n}^2>S_{y,n}^2>S_{z,n}^2)之值.
本文用不同的計算方式來計算P(S_{x,n}^2>S_{y,n}^2)及P(S_{x,n}^2>S_{y,n}^2>S_{z,n}^2),
其結果適用於所有的偶數n. | zh_TW |
dc.description.abstract | Let S_{x,n}^2,S_{y,n}^2 and S_{z,n}^2 denote sample variances obtained from three independent normal distributions . Each sample has sample size n . Shieh (2012) calculated P(S_{x,n}^2>S_{y,n}^2) when n Greater than or equal 2 and P(S_{x,n}^2>S_{y,n}^2>S_{z,n}^2) when n Greater than or equal 3 is odd. In this paper , we calculate P(S_{x,n}^2>S_{y,n}^2) and P(S_{x,n}^2>S_{y,n}^2>S_{z,n}^2 by different methods and the results are valid for even n. | en_US |
DC.subject | 三獨立常態樣本變異數間之順序的機率 | zh_TW |
DC.title | 三獨立常態樣本變異數間之順序的機率(II) | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |