DC 欄位 |
值 |
語言 |
DC.contributor | 能源工程研究所 | zh_TW |
DC.creator | 葉人菘 | zh_TW |
DC.creator | Jen-Sung Yeh | en_US |
dc.date.accessioned | 2012-11-13T07:39:07Z | |
dc.date.available | 2012-11-13T07:39:07Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=993208019 | |
dc.contributor.department | 能源工程研究所 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本研究使用COMSOL流體模型軟體模擬電子迴旋共振化學氣相沉積(ECR-CVD)之矽薄膜製程,以蘭摩爾探針(Langmuir probe)結合電漿放射光譜儀(Optical Emission Spectroscopy, OES)作為模擬驗證工具,藉由模擬的方式瞭解其中電漿的基本特性與活性粒子的密度及分佈情況,並探討改變操作參數(微波功率、製程壓力、磁場組態、氫稀釋比)下電漿的變化。
模擬結果顯示,共振區之電子透過迴旋加熱機制吸收了大於90%的微波能量,而受到共振反應影響,電子密度及電子溫度之極大值皆分佈在共振區附近。此外,電漿裡重要活性粒子之分佈情形,主要是由產生的機制不同所造成,其中,SiH3與H主要是由電子碰撞SiH4生成,而SiH2粒子的反應有兩個主要來源,一方面為SiH3互相碰撞生成;另一方面由電子碰撞SiH4所產生。操作參數方面,改變功率主要影響電子密度,電子溫度則無太明顯變化;壓力部分,電子密度及溫度隨壓力上升而明顯降低;而控制主磁場改變不同共振區間可得不同物種濃度分佈;氫稀釋比(H2/SiH4)部分,隨著氫稀釋比的增加將快速地減少SiH3密度,而H原子密度則隨之上升,因此增加氫稀釋比將減少沉積速率,並且增加薄膜之微晶結晶率。最後,數值模擬結果與蘭摩爾探針及OES之實驗量測值作比較,可獲得一致的結果。
| zh_TW |
dc.description.abstract | This research used COMSOL fluid model software to simulate the silicon thin-film plasma process received from the electron cyclotron resonance chemical vapor deposition (ECR-CVD). This study also used the simulation results to verify the results obtained from Langmuir probe and the Optical Emission Spectroscopy (OES). From such simulation results, we can understand the basic properties of the plasma as well as the distribution and the density of the active species. In addition, we can predict the changes of plasma properties under different operating parameters such as microwave power, pressure, magnetic field and hydrogen dilution ratio (H2/SiH4).
The results of simulation show that electrons in the resonance zone through repeated heating process absorb more than 90% of the microwave energy. Under the influence of resonance in reactions, both electron density (Ne) and electron temperature (Te) have the largest amounts around the resonance zone. The distributions of radicals in the plasma mainly are due to differences in their plasma formation. Thus, SiH3 and H species are generated mainly due to the collisions of an electron and SiH4. On the other hands, SiH2 species are generated as the results of collisions of either 2SiH3 particles or an electron with and SiH4. Power variations will change the electron density, but electron temperature seem not to change much. Increase of pressure will decrease both electron temperature and density. Changing the magnetic field will change the resonance zone as well as the density of different species. Thus, the different species distributions can be obtained by controlling the main magnetic field. When hydrogen dilution ratio increases, SiH3 species will rapidly decrease since H density is increased. Thus, the deposition rate of amorphous silicon (a-Si:H) will decrease and the crystalline fraction of thin films is increased. Finally, these simulation results show a good agreement with the measurement results of Langmuir probe and OES.
| en_US |
DC.subject | 電子迴旋共振化學氣相沉積 | zh_TW |
DC.subject | 矽薄膜 | zh_TW |
DC.subject | 電漿模擬 | zh_TW |
DC.subject | ECR-CVD | en_US |
DC.subject | silicon thin film | en_US |
DC.subject | plasma simulation | en_US |
DC.title | 應用於矽薄膜化學氣相沉積製程之電子迴旋共振電漿模擬研究 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | The simulation study of Electron Cyclotron Resonance Plasma for silicon thin film Deposition process | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |