博碩士論文 995202038 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator郭易祿zh_TW
DC.creatorYi-Lu Guoen_US
dc.date.accessioned2013-7-11T07:39:07Z
dc.date.available2013-7-11T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=995202038
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract中文摘要 在本論文中,我們於距離繼承圖中求解最長路徑問題。所謂的最長路徑問題即為於圖形中找出一條最長的簡單路徑問題,為漢彌爾頓路徑問題的一般化,故於一般圖形中求解難度為一NP-complete問題。所謂的距離繼承圖其性質為:對於圖上任意兩點,其間的的最短距離於任何原圖的誘導子圖中都相同。本篇論文利用距離繼承圖的特性,於O(n4)時間內求解距離繼承圖上的最長路徑問題。zh_TW
dc.description.abstractAbstract. The longest path problem is to find a path of maximum length in a graph. As a generalization of Hamiltonian path problem, it is NP-complete on general graphs. A graph is called distance-hereditary if the distance of each pair of vertices in every connected induced subgraph containing them are the same. In this dissertation, we present an O(n4) time algorithm to solve the longest path problem on a distance-hereditary graph of n vertices.en_US
DC.subject最長路徑問題zh_TW
DC.subject距離繼承圖zh_TW
DC.subject多項式時間演算法zh_TW
DC.subjectLongest path problemen_US
DC.subjectDistance-hereditary graphsen_US
DC.subjectPolynomial-time algorithmsen_US
DC.title距離繼承圖上的最長路徑問題zh_TW
dc.language.isozh-TWzh-TW
DC.titleThe Longest Path Problem on Distance-hereditary Graphsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明