博碩士論文 100225010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:165 、訪客IP:3.145.170.67
姓名 許致榕(Chih-Jung Hsu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Importance sampling for VaR and ES calculations under GARCH model)
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ 台灣指數上的股價報酬預測性
★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣★ On Jump Risk of Liquidation in Limit Order Book
★ 結構型商品之創新、評價與分析★ 具有厚尾殘差下 有效地可預測性檢定
★ A Dynamic Rebalancing Strategy for Portfolio Allocation★ A Multivariate Markov Switching Model for Portfolio Optimization
★ 漸進最佳變點偵測在金融科技網路安全之分析★ Reducing forecasting error under hidden markov model by recurrent neural networks
★ Empirical Evidences for Correlated Defaults★ 金融市場結構轉換次數的偵測
★ 重點重覆抽樣下拔靴法估計風險值-以台泥華碩股票為例★ 在DVEC-GARCH模型下風險值的計算與實證研究
★ 資產不對稱性波動參數的誤差估計與探討★ 公司營運狀況與員工股票選擇權之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 風險價值(VaR)不只廣泛應用在投資組合的風險測量上,也成為風險管理的重要基準;條件風險值(ES)也是風險測度指標而且包含更多關於分布尾端的資訊。因此,VaR和ES的評估精確度受到越來越多的關注。在此篇論文,我們使用一個對稱的GARCH(1,1)模型。然後,我們採用一個方法-importance sampling technique,來減少變異數且精確地估計VaR與ES。此外,importance sampling technique可以得到與其他的方法一樣的精確度但卻使用較少的樣本。在最後,我們展示我們的方法importance sampling technique優於其他方法。
摘要(英) Value-at-risk (VaR) is not only broadly used in portfolio risk measurement but also becomes an important benchmark in risk-management. Moreover, expected shortfall (ES) is a risk measure and has more information about the distribution of returns in the tail. Thus, evaluating precision of VaR and ES is getting more attention. In this paper, we suggest a symmetric GARCH(1,1) model to fit the loss data. Then, we propose an importance sampling technique to reduce the variance and estimate VaR and ES accurately. Besides, we find the method with importance sampling which can get the same precision like other methods but using less sample sizes. In the end, we show the method with importance sampling technique outperforms other methods.
關鍵字(中) ★ 風險價值
★ 條件風險值
★ 厚尾
★ GARCH模型
關鍵字(英) ★ Value-at-risk
★ Expected shortfall
★ Heavy tailed
★ GARCH model
論文目次 Contents
摘要 i
Abstract ii
致謝 iii
List of Figures vi
List of Tables vii
1 Introduction 1
2 Preliminaries 3
2.1 Model 3
2.2 Risk measure 4
3 Estimation methods 6
3.1 Historical simulation 6
3.2 Normal and T conditional distribution 7
3.3 The Hill estimator 8
3.4 Filtered historical simulation 9
3.5 Importance sampling 10
3.3.2 The normal distribution case 10
3.3.2 The t-distribution case 15
4 Numerical results 22
4.1 The normal case 22
4.2 The t-distribution case 24
4.3 Empirical Study 29
5 Conclusion 31
Reference 33
參考文獻 Andreev, A. and A. Kanto (2005). Value-at-risk prediction: A comparison of alternative strategies. Journal of Risk 7 (2), 55-61.
Baillie, R. and T. Bollerslev (1989). The message in daily exchange rates: A conditional variance tale. Journal of Business and Economic Statistics 7, 297-309.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-27.
Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics 69, 542-547.
Cheng-Der Fuh, Inchi Hu, Y.-H. H. and R.-H. Wang (2010). Efficient simulation of value at risk with heavy-tailed risk factors. Operations Research 59 (6), 1395-1406.
Chriso ersen, P. and S. Goncalves (2005). Estimation risk in financial risk management. Journal of Risk 7 (3).
Do, K.-A. and P. Hall (1991). On importance resampling for the bootstrap. Biometrika 78 (1), 161-167.
Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom inflation. Econometrica 50, 987-1007.
Fuh, C. and I. Hu (2004). Efficient importance sampling for events of moderate deviations with applications. Biometrika 91 (2), 471-490.
Fuh, C. and I. Hu (2007). Estimation in hidden markov models via efficient importance sampling. Bernoulli 13 (2), 492-13.
Giovanni Barone-Adesi, K. G. and L. Vosper (1999). Var without correlations for nonlinear portfolios. Journal of Futures Markets 19, 583-602.
Hall, P. (1991). Bahadur representations for uniform resampling and importance resampling with applications to asymptotic relative eciency. Annals of Statistics 19,
1062-1072.
Hill, B. (1975). A simple general approach to inference about the tail of a distribution.Annals of Statistics 3, 1163-74.
Hull, J. and A. White (1998). Incorporating volatility updating into the historical simulation method for var. Journal of Risk 1, 5-19.
Kuester, K., S. M. and M. S. Paolella. (2006). Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics 4, 53-89.
Mancini, L. and F. Trojani (2011). Robust value at risk prediction. Journal of Financial Econometrics, 1-33.
McNeil, A. J. and R. Frey. (2000). Estimation of tail-related risk measures for heteroscedastic fi nancial time series: An extreme value approach. Journal of Empirical
Finance 7, 271-300.
Nelsen, R. B. (1999). An introduction to copulas.
Paul Glasserman, P. H. and P. Shahabuddin (1999). Asymptotically optimal importance sampling and strati cation for pricing path-dependent options. Mathematical
Finance 9, 117-152.
Paul Glasserman, P. H. and P. Shahabuddin (2000). Variance reduction techniques for
estimating value-at-risk. Management Science 46, 1349{1364.
Paul Glasserman, P. H. and P. Shahabuddin (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance 12(3), 239-269.
Pritsker, M. (1997). Towards assessing the magnitude of value-at-risk errors due to errors in the correlation matrix. Financial Engineering News, 14-16.
Shih-Kuei Lin, R.-H. W. and C.-D. Fuh (2006, September). Risk management for linear and non-linear assets: A bootstrap method with importance resampling to evaluate
value-at-risk. Asia-Paci c Financial Markets 13, 261-295.
指導教授 傅承德 審核日期 2013-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明