以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:14 、訪客IP:18.117.244.136
姓名 陳龍(Long Chen) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 結晶矽與銅銦鎵硒薄膜太陽能電池模組實測分析
(Measurement and Analysis of the Crystal-silicon and CIGS Photovoltaic Modules in the Real Environment)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 我們挑選單多晶矽太陽能電池在轉換效率接近的模組,實際室外量測發電量效率與溫度以及光強的關係,以研究單多晶矽內部物理機制的差異,也引進了銅銦鎵硒薄膜太陽能電池模組,來比較薄膜太陽能電池與結晶矽的內部物理機制與發電量的差異,也設計雙軸追日機構,以觀察對於精確性要求不需像聚光型太陽能電池的銅銦鎵硒薄膜太陽能電池模組,追日所提升的發電量是否符合成本。
為了探討一系列問題,我們在桃園縣中壢地區對此三種技術的太陽能板架設於建築物頂樓進行觀測,藉量測數據分析以了解規格與實際的差異與物理機制跟天氣條件的關係。
透過此篇論文的研究,可知結晶矽模組效率最高為 13.29%而 CIGS 模組效率最高為 8.04%。單晶矽多晶矽與 CIGS 模組的溫度係數關係為βMono-Si=0.0458>βPoly-Si=0.0446>βCIGS=0.0285,光照係數關係為γPoly-Si=0.1212>γCIGS=0.1034>γMono-Si=0.0683。追日式的發電增益量為 1.32 倍。摘要(英) Three different kinds of photovoltaic modules, mono-crystalline silicon, poly-crystalline silicon and CIGS solar cells were chosen conversion efficiency to measure the outdoor temperature, efficiency and light intensity in order to understand their properties and study the physical mechanism of internal differences. A CIGS
thin-film solar cell module placed on a biaxial tracker was setup to compare the efficiency with a fixed module and to analyze if the generating power capacity can
cover the cost of the tracker or not. In order to figure the series of questions, the three techniques of solar cell modules were installed in the roof of a building in Chungli, Taoyuan. Based on the analysis of the measured data in the real environment, the relationships of the weather conditions with the specifications, the physical mechanisms of the mono-crystalline silicon, poly- crystalline silicon and the CIGS photovoltaic modules can be achieved. Finally, we found that the highest efficiency of the mono-crystalline silicon and the CIGS photovoltaic modules is 13.29% and 8.04%, respectively. The temperature coefficients of the mono-crystalline silicon, the poly-crystalline silicon and the CIGS photovoltaic modules are βMono-Si=(0.0458°C-1) >
βPoly-Si=(0.0446°C-1) > βCIGS=(0.0285°C-1). The irradiance coefficients are γPoly-Si=(0.1212) > γCIGS=(0.1034) > γMono-Si=(0.0683). And the average energy increasing ratio with the tracker is 1.32關鍵字(中) ★ 單晶矽模組
★ 多晶矽模組
★ 銅銦鎵硒薄膜太陽能電池模組
★ 追日
★ 溫度係數
★ 光照係數關鍵字(英) ★ mono-crystalline silicon photovoltaic module
★ poly-crystalline silicon photovoltaic module
★ CIGS photovoltaic module
★ tracker
★ temperature coefficient
★ irradiance coefficient論文目次 目錄……………………………………………………………………………………i
圖目錄………………………………………………………………………………iii
表目錄……………………………………………………………………………….vi
誌謝…………………………………………………………………………………vii
1. 緒論…………………………………………………………………………1
1-1 研究動機………………………………………………………………1
1-2 論文架構………………………………………………………………3
2. 太陽能電池的原理………………………………………………………………4
2-1 太陽能電池的基本原理………………………………………………4
2-2 溫度及光對太陽能電池的影響………………………………………8
2-2-1 光照對太陽能電池的影響………………………………………8
2-2-2 溫度對太陽能電池的影響………………………………………9
2-3 材料對太陽能電池的影響………………………………………….13
2-3-1 結晶矽太陽能電池…………………………………………….14
2-3-1-1 單晶矽太陽能電池………………………………….15
2-3-1-2 多晶矽太陽能電池………………………………….15
2-3-2 銅銦鎵硒薄膜太陽能電池…………………………………….16
3. 太陽能發電系統的介紹……………………………………………………….18
3-1 獨立型(Stand-Alone)太陽光電系統………………………………19
3-2 市電併聯型(Grid-Connected)太陽光電系統…………………….19
3-3 混合型系統………………………………………………………….21
4. 設備介紹……………………………………………………………………….24
4-1 硬體及設備……………………………………………………………….24
4-1-1 硬體配線……………………………………………………….24
4-1-2 硬體及設備規格……………………………………………….25
4-1-3 太陽能模組輸出的量測……………………………………….31
4-1-4 太陽光照度量測……………………………………………….33
4-1-5 銅銦鎵硒薄膜太陽能電池雙軸追日機構…………………….33
4-2 Labview 監控軟體…………………………………………………. 34
4-3 氣象資料…………………………………………………………….36
4-4 分析方法…………………………………………………………….37
4-4-1 NOCT(Nominal Operation Cell Temperature)………………37
4-4-2 INOCT(Installed Nominal Operation Cell Temperature).38
4-4-2 光照係數與溫度係數 …………………………………………39
4-4-3 電壓、電流、溫度及衍生之計算…………………………….40
4-4-4 雙軸追日操作………………………………………………….415. 結果與分析…………………………………………………………………….42
5-1 比較模組 NOCT 之特性……………………………………………….42
5-2 校正模組內部溫度……………………………………………………45
5-3 模組溫度對日照強度的關係…………………………………………48
5-4 比較單晶矽與多晶矽與銅銦鎵硒的照度及效率關係………………50
5-5 比較單晶矽與多晶矽與銅銦鎵硒的溫度及效率關係………………53
5-6 比較單晶矽與多晶矽與銅銦鎵硒溫度與光照與效率關係圖………54
5-7 比較單晶矽與多晶矽與銅銦鎵硒在累積能量的表現………………58
5-8 比較單晶矽與多晶矽於環境溫度不同時效率與累積能量影響……60
5-9 比較單晶矽與多晶矽與銅銦鎵硒太陽能模組在溫度高低的表現…61
5-10 比較固定式與追日接收日照量的差異………………………………62
5-11 比較固定式與追日銅銦鎵硒太陽能模組累積能量表現……………64
6. 結論…………………………………………………………………………….65
參考文獻…………………………………………………………………………….67參考文獻 ﹝1﹞ J. Hechtp, “ Photonic fronter photovoltaics: progress
in the quest for photovoltaic power generation” , Laser
Focus World, vol. 49, pp. 47–51, 2013.
﹝2﹞ 周世欽, ”透明導電膜功函數對矽異質接面太陽能電池的影響” , 國立中央大學碩士論文,2013.
﹝3﹞ Photon Lab, “Weak-light behavior counts”, Photon, vol.4, pp.148-152, 2011.
﹝4﹞ K. Bücher, “Site dependence of the energy collection of PV modules”, Solar Energy Materials and Solar Cells, vol. 47, pp.85-94, 1997.
﹝5﹞ E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells”, Renewable Energy, vol. 28, pp. 1-12, 2003.
﹝6﹞ M. A. Green, ”General Temperature Dependence of Solar Cell Performance and Implications for Device Modelling”, Prog. Photovolt: Res, vol. 11, pp.333-340, 2003.
﹝7﹞ D. J. Mbewe, H. C. Card, D. C. Card, “A model of silicon solar cells for concentrator photovoltaic and photovoltaic/thermal system design”, Solar Energy Vol.35, No. 3, pp. 247-258,1985.
﹝8﹞ T. Huld, et al., “Mapping the performance of PV modules, effects of module type and data averaging”, Solar Energy, vol. 84, pp. 324–338, 2010.
﹝9﹞ K. Akhmad, et al., “Outdoor performance of amorphous silicon and polycrystalline silicon PV modules”, Solar Energy Materials and Solar Cells, vol. 46, pp. 209-218, 1997.
﹝10﹞ A. Royne, C. J. Dey, D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review”, Solar Energy Materials & Solar Cells, vol. 86, pp.451-483, 2004.
﹝11﹞ INVENTEC Energy 公司,取自 http://www.inventecenergy.com/
﹝12﹞ 李清元,振芫禎,「太陽能最大功率追蹤器之研究」,私立大同大學,碩士論文,2008。
﹝13﹞ 翁敏航,楊茹媛,管鴻,晁成虎,太陽電池「太陽能電池-原理、元件材料、製程與檢測技術」,東華書局,2008。
﹝14﹞ 洪天爵,賴志煌, 「銅銦鎵硒薄膜太陽能電池」,科儀新知, vol. 32, 2011.68
﹝15﹞ 何誌堅, ”硫化鎘薄膜對軟性太陽電池特性之研究” , 國立中央大學碩士論文,2014.
﹝16﹞ R. Ruther, M. M. Dacoregio, “Performance Assessment of a 2 kWp Grid-connected, Building-integrated, Amorphous Silicon Photovoltaic Installation in Brazil”, Prog. Photovolt. Res. Appl. 2000; 8: 257-266, John Wiley & Sons Ltd., 2000.
﹝17﹞ H. P. Garg, R. S. Adhikari, “System performance studies on a photovoltaic/thermal (PV/T) air heating collector”, Renewable Energy, vol. 16, pp. 725-730, 1999.
﹝18﹞ 工研院,太陽光電資訊網,取自
http://solarpv.itri.org.tw/aboutus/sense/category.asp
﹝19﹞ 頂晶科技股份有限公司,取自 http://www.tynsolar.com.tw/
﹝20﹞ 綠陽光電
﹝21﹞ 安捷倫公司,取自
http://www.home.agilent.com/agilent/home.jspx?cmpid=4572&lc=cht&cc=TW
﹝22﹞ 謝明諺, ”單晶矽與多晶矽太陽能模組實測研究” , 國立中央大學碩士論文,2013.
﹝23﹞ 日揚光電,取自
http://www.jdauspice.com/tw/products_list.php?id=283
﹝24﹞ 邊界層實驗室,國立中央大學大氣系
﹝25﹞ IEC-61215 國際標準安規,Second edition, 2005-04
﹝26﹞ IEC-61416國際標準安規
﹝27﹞ M. C. A. Garcia, “Estimation ofphotovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations, Renewable Energy vol.29, pp.1997-2010, 2004.
﹝28﹞ M. K. Fuentes, “A Simplified Thermal Model for Flat-Plate Photovoltaic Arrays, vol. 46, pp. 209-218,1987.
﹝29﹞ D. L. Evans, “Simplified Method For Predicting Photovoltaic Array Output”, Solar Energy vol.27, pp.555-560, 1981.
﹝30﹞ IEC-60904-5 國際標準安規, First edition, 1993-11
﹝31﹞ J. D. Mondol, Y. G. Yohanis, B. Norton, “The effect of low insolation conditions and Inverter oversizing on the long-term performance of a grid-connected photovoltaic system”, Prog. Photovolt: Res. Application , vol. 15, pp.353–368, 2007.
﹝32﹞ K. H. Lam, J. Close, W. Durisch, “Modelling and degradation study on a copper indium diselenide module”,Solar Energy, vol. 77, pp. 121-127, 2004.
﹝33﹞ M. Nishitani, “Analysis of temperature and illumination dependencies of CIS cell performance”, Solar Energy Materials and Solar Cells , vol. 50, pp.63–70, 1998.
﹝34﹞ E. Skoplaki, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlation”, Solar Energy, vol. 83, pp. 614–624, 2009.
﹝35﹞ 集邦光伏網,取自 http://pv.energytrend.com.tw/pricequotes.html
﹝36﹞ 林文德” 太陽能追日系統之研究:雙軸及單軸追日系統”, 崑山科技大學電機系指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2015-1-15 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare