博碩士論文 100322026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.138.61.77
姓名 吳宇浩(Yu-hao Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 液化地盤群樁基礎地震反應之模擬
相關論文
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 沉箱碼頭受震反應及側向位移分析
★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響
★ 既存隧道周圍土壓力受鄰近新挖隧道的影響★ 以攝影測量觀察離心土壩模型受滲流力作用之變位
★ 通隧引致鄰近基樁之荷重傳遞行為★ 潛盾施工引致之地盤沉陷案例分析
★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性★ 懸臂式擋土壁開挖之離心模型試驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 樁基礎常見使用於各項公共工程,如風力發電、海域鑽油平台、橋梁、核能電廠等設施之基礎,其中,基樁須能承受可能發生之垂直力、水平力,並考慮振動載重及地震作用所造成之動態反應。地震發生時,樁體受上部結構物慣性力、以及地盤反覆土壓力相互作用下,會使樁身產生側向變形;群樁基礎若埋置於液化土層時,因液化土壤剪力強度的喪失,使樁體被動土壓力減少。尤其樁基礎位在緩和坡地或岸邊土層時,則會產生側向滑移(lateral spreading),造成樁基礎產生嚴重破壞。因此樁基礎於地震力作用時,應考慮土壤與結構物互制效應。本研究採用乾式儲存基座作為模擬與試驗對象,透過模型因次分析,製作縮尺樁-土-結構模型。並利用中大地工離心機進行群樁離心模型振動台試驗。
試驗結果顯示,(1)在受到相同的基盤輸入加速度時,位於乾砂地盤中的樁其最大樁身彎矩,會大於埋置在液化土層中樁基礎的最大樁身彎矩;(2)當乾砂地盤中受到相同的基盤輸入加速度,樁基礎在樁帽埋置於土壤中時的最大樁身彎矩,會小於樁帽裸露於地表之樁基礎的最大樁身彎矩;(3)當飽和砂地盤中受較小的基盤輸入加速度,樁帽裸露或樁帽埋置於地表,其樁身彎矩分布皆與埋置在乾砂地盤的試驗結果相似;(4)當飽和砂地盤受到較大基盤輸入加速度而發生液化時,由於砂層液化喪失絕大部分的剪力強度,樁帽裸露或樁帽埋置於地表,其樁身最大彎矩亦無明顯差別。(5)超額孔隙水壓激發時,地盤內隨著深度增大,樁身軸力亦逐漸下降,直至超額孔隙水壓開始消散,樁身軸力方回復並接近至振動前的軸力。
摘要(英) Group piles foundation is widely used in public projects, such as wind power generation, oil drilling rig, bridges and nuclear power plants. It is important to consider its dynamic response under seismic loadings. During earthquake, piles deform laterally subjecting to the inertia force of superstructure and cyclic earth pressure of ground. Furthermore, the passive earth pressure of group piles foundation would loss as well as the shear strength when the soil liquefies. Sometimes, the lateral spreading occurs leading to the serious damage of piles. A series of centrifuge shaking table tests in this study was performed to investigate the seismic behavior of group piles with pile cap and superstructure.

According to the test results, the following conclusions can be drown. (1) The maximum bending moment of group piles in dry sand is larger than that in liquefied sand. (2) The maximum bending moment of group piles with pile cap embedded in the ground is smaller than that with pile cap exposed above the ground surface. (3) Subjecting to the small input base acceleration, the bending moment distributions of group piles in dry and saturated sand deposits are almost the same. (4) Under the larger input base acceleration, the soil liquefies and leads to that the maximum bending moment of group piles with embedded pile cap is almost the same as that with exposed pile cap. (5) When the soil liquefies, the excess pore water pressure increases with the increasing depth, and the axial force decreases with increasing excess pore water pressure along depths. After the dissipation of pore water pressure, the axial force increases to as large as that before shaking.
關鍵字(中) ★ 土壤液化
★ 群樁
★ 離心模型振動台試驗
關鍵字(英) ★ soil liquefaction
★ group piles
★ centrifuge shaking table test
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第1章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 1
1-3 論文架構 2
第2章 文獻回顧 3
2-1 土壤液化發生機制 4
2-2 離心模型模擬之試驗原理 4
2-3 離心模型試驗之因次分析 6
2-3-1 靜態模型相似率 6
2-3-2 動態模型相似率 8
2-4 樁基礎受振反應機制 11
2-5 以模型試驗模擬樁基礎受振反應 12
2-5-1 1g振動台試驗 12
2-5-2 離心模型試驗 14
2-6 樁基礎承受側向力分析與設計 15
第3章 試驗計劃與配置 23
3-1 試驗土樣及基本性質 23
3-2 試驗儀器及相關設備 23
3-2-1 地工離心機 23
3-2-2 單軸向振動台 24
3-2-3 積層版剪力試驗箱及橡皮袋 25
3-2-4 移動式霣降儀 25
3-2-5 各式量測工具 26
3-3 試驗準備步驟及流程 26
3-3-1 試驗前相關準備作業 26
3-3-2 試體之製作 27
3-3-3 試體之飽和作業 28
3-4 離心群樁模型振動台試驗 29
3-5 群樁基礎縮尺模型設計 29
3-5-1 模型計測樁之設計 29
3-5-2 模型計測樁之校正 31
3-5-3 群樁間距 32
3-5-4 樁帽之設計 32
3-5-5 模型樁基座設計 33
3-5-6 計測樁上部重量塊之設計 33
第4章 試驗結果與分析 60
4-1 試驗規劃 60
4-2 試驗項目、條件與配置 60
4-3 試驗結果 62
4-3-1 PG1-D-Ex的試驗成果 62
4-3-2 PG2-D-Em的試驗成果 65
4-3-3 PG3-D-EmR的試驗成果 67
4-3-4 PG4-W -Em的試驗成果 69
4-3-5 PG5-W-Ex的試驗成果 72
4-4 群樁基礎受不同振幅震動之試驗成果的綜合討論 76
4-4-1 升g階段試體變化 76
4-4-2 地盤及儲存箱的均方根加速度放大倍率 76
4-4-3 不同試驗條件下樁身最大彎矩 78
4-4-4 軸身軸力與超額孔隙水壓之比較 78
第5章 結論與建議 234
5-1 結論 234
5-2 建議 236
參考文獻 237
參考文獻 1.Abdoun T., and Dobry R., “Evaluation of pile foundation response to lateral spreading” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1051–1058 (2002)
2.Adhikaria S., and Bhattacharyab S., “Dynamic instability of pile-supported structures in liquefiable soils during earthquakes,” Shock and Vibration,Vol.15, pp. 665–685 (2008).
3.Bhattacharya S.,“Pile Instability during earthquake liquefaction,” Ph.D Dissertation, University of Cambridge, Cambridge, UK (2003).
4.Brandenbergy S.J., Boulanger R.W., and Kutter ,B.L., “Static Pushover Analyses of Pile Groups in Liquefied and Laterally Spreading Ground in Centrifuge Tests,” Geotechnical and geoenvironmental Engineering, Vol.133, No.9, pp.1055-1066 (2007).
5.Dash S.R., Bhattacharya, S., Blakeborough, A., and Hyodo, M., “P-Y curve to model lateral response of pile foundations in liquefied soils,” The 14th world Conference on Earthquake Engineering, Beijing, China, October, 12-17, (2008).
6.Dobry, R.D. Abdoun, T.O., & Goh, S.H. (2003), “Single piles in lateral spreads: field bending moment evaluation,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129(10), pp.879-889.
7.Finn, W. D. L., and Fujita, N., “Piles in liquefiable soils:seismic analysis and design issues,” Soil Dynamics and Earthquake Engineering,Vol.22, No. 22, pp.731–742(2002).
8.Kagawa T., Sato M., Minowa C., Abe A., and Tazoh T., “Centrifuge Simulations of Large-Scale Shaking Table Tests: Case Studies, ” Geotechnical and geoenvironmental Engineering,Vol.130, No., pp.663-672 (2004).
9.Liyanapathirana, D.S., and Poulos H. G. “Seismic Lateral Response of Piles in Liquefying Soil,” Geotechnical and geoenvironmental Engineering, Vol.131, No.12, pp.1466-1479 (2005).
10.Lee, C.J., Wang, C.R., Wei,Y.C., and Hung, W.Y., “Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests,” Bulletin of Earthquake Engineering, Vol. 10, No.2, pp.401-420 (2012-a).
11.Lee, Chung-Jung, Wei, Yu-Chen, Kou, Yu-Chieh, “Boundary effects of a laminar container in centrifuge shaking table tests,” Soil Dynamics and Earthquake Engineering, Vol.34, No. 1, pp.37-51, (2012-b).
12.McVay, M.,”Lateral response of three-row group in loose to dense sands at 3D and 5D pile spacing,” Journal of geotechnical engineering, Vol.121, No. 5. (1995)
13.Tokimatsu K., and Asaka Y., “Effects of Liquefaction-Induced Ground Displacement on Pile Performance in the 1995 Hyogoken-Nambu Earthquake,” Soil dynamics and earthquake engineering (1998).
14.Tokimatsu K., Suzukia S., and Sato M., “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation,” Soil dynamics and earthquake engineering, Vol.25, pp.753-762 (2005)
15.中華民國大地工程學會,建築物基礎構造設計規範,中華民國 (2001)。
16.日本道路協會,「道路橋示方書‧同解說」,日本(1996)。
17.張有齡、周南山,「張氏簡易側樁分析法(上篇:靜力部份)」,地工技術,第25期,第64-82頁(1989)。
18.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢(1999)。
19.李崇正、陳慧慈、魏雨辰、鄺伯軒、連紘震、洪汶宜、何泰源、吳文隆,「以離心模型振動台試驗模擬砂土層液化行為」,地工技術,第125期,第95-104頁 (2010)。
20.李崇正、陳慧慈、洪汶宜、蔡晨暉、陳婷、涂奕峻、謝孟修 (2013) ,「預振技術在單樁離心模型振動台試驗系統識別的應用」, 第十五屆大地工程學術研究討論會,9月11日至13日,雲林縣劍湖山王子飯店,國立雲林科技大學,B05,pp.580 - 584。
21.涂亦峻,「位於可液化砂土層中單樁基礎受震反應離心模擬」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
指導教授 李崇正(Chung-Jung Lee) 審核日期 2014-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明