博碩士論文 100323034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.222.106.205
姓名 洪婉毓(Wan-yu Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Zr48Cu36Al8Ag8Six(x = 0.00~1.00)鋯基金屬玻璃在硫酸與氯鹽環境中之腐蝕行為
(Corrosion behavior of Zr48Cu36Al8Ag8Six(x = 0.00~1.00) bulk metallic glasses (BMGs) in sulfuric acid and sodium chloride solutions)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文在探討Zr48Cu36Al8Ag8Six鋯基金屬玻璃中矽(Si)含量在0.00, 0.25, 0.50, 0.75, 1.00 at.%等範圍內對其腐蝕行為之影響,腐蝕溶液分為氯化鈉(NaCl)和硫酸(H2SO4)兩種環境,研究方法包含浸泡量測、直流電化學極化法(線性極化、Tafel極化、動態極化)與交流電化學阻抗頻譜法等來研究其腐蝕行為。
腐蝕測試前後採用熱示差分析儀(DSC)熱性質量測材料,藉以判別玻璃形成能力(GFA)與材料腐蝕行為之關係,此外用掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)進行表面形貌觀察,電子微探儀(EPMA)以分析腐蝕後元素分佈及X光光電子能譜儀(XPS)進行腐蝕生成物的探討。
綜合浸泡量測與電化學量測實驗結果顯示:含0.25 at.%矽之鋯基金屬玻璃抗蝕性最高,且在硫酸(H2SO4)環境中顯示出活性-鈍化轉變區,表面鈍化膜藉由XPS分析得知:含0.25 at.%矽之鋯基金屬玻璃,其表面由ZrO2與SiO2組成之峰值面積最大,此兩種保護性氧化物的貢獻,使其擁有最佳抗蝕性。
摘要(英) Corrosion behavior of Zr48Cu36Al8Ag8Six (x=0.00, 0.25, 0.50, 0.75, 1.00 at.%) bulk metallic glasses (BMGs) in sodium chloride and sulfuric acid solutions were investigated by immersion test, direct current (dc) polarization techniques (Tafel polarization, linear polarization resistance, potentiodynamic polarization) and electrochemical impedance spectroscopy.
Instrumental analyses such as DSC, SEM, AFM were carried out prior to and post the corrosion test to find the correlation between the corrosion behaviour and structure of the BMG; EPMA and XPS analyses provided the relationship between the corrosion and composition of the specimens.
According to the results from immersion test and electrochemical studies, we concluded that the specimens of BMG containing 0.25 at.%-Si revealed the best corrosion resistance. There was an occurrence of active - passive transition on the potentiodynamic polarization curve for the specimens immersed in sulfuric acid. The presence of passive film on the specimens was confirmed in terms of XPS analyses. Dominant contribution of the passive film indicated by the strongest peaks of ZrO2 and SiO2 led to the best corrosion resistance of the specimens with 0.25 at.%Si.
關鍵字(中) ★ 金屬玻璃
★ 矽
★ 腐蝕
★ 氯化鈉
★ 硫酸
關鍵字(英) ★ Metallic glasses
★ Zr-Cu-Al-Ag-Si
★ corrosion
★ NaCl
★ H2SO4
論文目次 摘要 I
Abstract II
目錄 IV
表目錄 VII
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的與實驗架構 3
第二章 理論背景與文獻回顧 4
2-1 非晶質合金 4
2-1-1 非晶質合金特性 4
2-1-2 機械性質 4
2-1-3 耐蝕性 5
2-1-4 玻璃轉換溫度(Tg) 5
2-2 非晶質合金形成法則 5
2-3 玻璃形成能力(Glass Forming Ability, GFA)準則 6
2-3-1 簡化玻璃溫度(Trg) 6
2-3-2 過冷液態溫度區(ΔTx) 7
2-3-3 γ參數 7
2-3-4 γm參數 8
2-4 塊狀金屬玻璃相關腐蝕研究 8
2-5 電化學測試法之原理與相關理論 10
2-5-1 開路電位(Open Circuit Potential) 10
2-5-2 線性極化(Linear polarization) 10
2-5-3 動態極化(Potentiodynamic polarization)之Tafel掃描 10
2-5-4 交流阻抗頻譜法(Electrochemical Impedance Spectroscopy) 11
2-5-5 等效電路圖及模擬 14
第三章 實驗方法及步驟 15
3-1 試片準備與規格 15
3-2 實驗方法 16
3-2-1 溶液配製 16
3-2-2 浸泡實驗 16
3-2-3 電化學實驗 16
3-2-3-1 開路電位 17
3-2-3-2 線性極化測試 17
3-2-3-3 Tafel極化測試 17
3-2-3-4 交流阻抗頻譜測試 17
3-3 表面分析儀器 18
3-3-1 X光光電子能譜儀/歐傑電子能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA/Auger) 18
3-3-2 原子力顯微鏡 (Atomic Force Microscopy, AFM) 18
3-3-3 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 18
3-3-4 電子微探儀(Electron Probe X-Ray Microanalyzer, EMPA) 19
3-4 金屬玻璃特性分析 19
3-4-1 X光繞射儀分析儀(X-ray Diffractometer, XRD) 19
3-4-2 熱示差分析儀(DSC) 19
第四章 結果 20
4-1 X光繞射分析 20
4-2 腐蝕性離子影響測試 20
4-2-1 浸泡量測法 20
4-2-2 線性極化法 20
4-2-3 Tafel極化法 21
4-2-4 動態極化法 22
4-2-5 交流阻抗頻譜分析(EIS) 與等效電路模擬 23
4-3 表面分析 24
4-3-1 SEM表面分析 24
4-3-2 AFM表面分析 26
4-3-3 XPS表面分析 26
4-3-4 EPMA表面分析 27
4-4-1 非恆溫熱性質分析 27
第五章討論 30
5- 1 含矽量對於抗蝕性能力探討 30
5- 2 腐蝕環境因子 32
5-2-1 氯離子(Cl-)影響 32
5-2-2 硫酸根離子(SO42-)影響 32
5-3 表面分析 33
5-3-1 表面形貌分析討論 33
5-3-2 XPS分析之腐蝕機制討論 34
第六章結論與展望 36
參考文獻 37
參考文獻 [1] W. Klement, R. Willens, and P. Duwez, “The Thermophysical Properties of Bulk Metallic Glass-Forming Liquids”, Nature, Vol.187, pp.869, (1960).
[2] 吳學陞, “新興材料--塊狀非晶質金屬材料”, 工業材料, Vol.149, pp.154-165, (1999).
[3] A. Inoue, X.M. Wang and W. Zhang, “Developments and Applications of Bulk Metallic Glasses”, Reviews on Advanced Materials Science, Vol.18, pp.1-9, (2008).
[4] V. R. Raju, U. Kühn, U. Wolff, F. Schneider, J. Eckert, R. Reiche, and A. Gebert, “Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti”, Materials Letters, Vol.57(1), pp.173-177, (2002).
[5] A. Inoue and T. Masumoto, “Mg-based amorphous alloys”, Materials Science & Engineering A, Vol.173 (1–2), pp.1-8, (1993).
[6] B. Liu and L. Liu, “The effect of microalloying on thermal stability and corrosion resistance of Cu-based bulk metallic glasses”, Materials Science & Engineering A, Vol. 415(1-2), pp.286-290, (2006).
[7] A. Kawashima, H. Habazaki, and K. Hashimoto, “Highly corrosion-resistant Ni-based bulk amorphous alloys”, Materials Science & Engineering A, Vol. 304-306, pp.753–757, (2001).
[8] P. T. Chiang, G. J Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, C. H. Lai, “Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans”, Fooyin Journal of Health Sciences, Vol. 2, pp.12, (2010).
[9] C. W. Chu, Jason S. C. Jang, S. M. Chiu, J. P. Chu, “Study of The Characteristics and Corrosion Behavior For The Zr-Based Metallic Glass Thin Film Fabricated by Pulse Magnetron Sputtering Process”, Thin Solid Film, Vol. 517, pp. 4930-4933, (2009).
[10] W. He, A. Chuang, Z. Cao, P. K. Liaw, “Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol.41, pp. 1726-1734, (2010).
[11] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, “Thermoplastic forming of bulk metallic glass – Applications for MEMS and microstructure fabrication”, Materials Science and Engineering A, Vol.449–451, pp. 898–902, (2007).
[12] P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, “Nano-fabrication with metallic glass-an exotic material for nano-electromechanical systems”, Nanotechnology, Vol.18, pp.035302, (2007).
[13] G. Kumar, H.X. Tang, J. Schroers, “Nanomoulding using thermoplastic forming with bulk metallic glass”, Nature, Vol.457, pp. 868–873, (2009).
[14] X.H. Chen, X.C. Zhang, Y. Zhang, G.L. Chen, “Fabrication and characterization of metallic glasses with a specific microstructure for micro-electro-mechanical system applications”, Journal of Non-Crystalline Solids, Vol.354, pp. 3308–3316, (2008).
[15] A.A. Kündig, M. Cucinelli, P.J. Uggowitzer, A. Dommann, “Preparation of high aspect ratio surface microstructures out of a Zr-based bulk metallic glass”, Microelectronic Engineering, Vol.67–68, pp.405-409, (2003).
[16] X.P. Nie, X.H. Yang, J.Z. Jianga, “Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses”, Journal of Alloys and Compounds, Vol.481, pp.498-502, (2009).
[17] B.A. Green, R.V. Steward, I. Kim, C.K. Choi, P.K. Liaw, K.D. Kihm, Y. Yokoyama, “In situ observation of pitting corrosion of the Zr50Cu40Al10 bulk metallic glass”, Intermetallics, Vol.17, pp.568-571, (2009).
[18] L.Q. Xing, D.M. Herlach, M. Cornet, C. Bertrand, J.-P. Dallas, M.-F. Trichet, J.-P. Chevalier, “Mechanical properties of Zr57Ti5Al10Cu20Ni8 amorphous and partially nanocrystallized alloys”, Materials Science and Engineering A, Vol.226-228, pp.874-877, (1997).
[19] J. Jayaraj, A. Gebert, L. Schultz,“Passivation behaviour of structurally relaxed Zr48Cu36Ag8Al8 metallic glass”, Journal of Alloys and Compounds, Vol.479, pp.257-261,(2009).
[20] C.L. Qin, W. Zhang, Q.S. Zhang, K. Asami, A. Inoue, “Electrochemical properties and surface analysis of Cu–Zr–Ag–Al–Nb bulk metallic glasses”, Journal of Alloys and Compounds, Vol.483, pp.317-320, (2009).
[21] Q. Zhang, W. Zhang and A. Inoue, “New Cu-Zr-Based Bulk Metallic Glasses with Large Diameters of up to 1.5 cm”, Scripta Materialia, Vol.55, pp.711-713, (2006).
[22] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol.48, pp.279-306, (2000).
[23] J. S. C. Jang, Y. W. Chen, L. J. Chang and G. J. Chen, “Crystallization behavior of the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy”, Materials Chemistry and Physics, Vol.88, pp.227, (2004).
[24] Jason S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, Vol.478, pp.215-219, (2009).
[25] 李易遂,「添加微量矽元素對 Cu42Zr42Al8Ag8塊狀非晶質合金熱性質與機械性質影響之研究」,義守大學,碩士論文,民國98年。
[26] T. H. Hung, J. C. Huang, J. S. C. Jang and S. C. Lu, “Improved Thermal Stability of Amorphous Zr-Al-Cu-Ni Alloys with Si and B”, Materials Transactions, JIM, Vol.48, pp.239-243, (2007).
[27] V.Kapaklis, P.Schweiss, C.Polotis, “Bulk Amorphous and Nanocrystalline Reinforced Pd-Based Alloys: Formation, Structural, Thermal and Elastic Properties”, Advanced Engineering Materials, Vol.7, pp.123-127, (2005).
[28] G. Wang, P. Liaw, 「Bulk Metallic Glasses」, pp 169-203, (2008).
[29] Z.P. Lu, C.T. Liu, “A new approach to understanding and measuring glass formation in bulk amorphous materials”, Intermetallics, Vol.12, pp.1035, (2004).
[30] A. Inoue, “High-strength bulk amorphous-alloys with low critical cooling rates”, Materials Transactions, JIM, Vol.36, pp.866-875, (1995).
[31] A. Inoue, T Zhang, T Masumoto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, Vol.156-158, pp.473-480, (1993).
[32] 陳俊明,「微量Pd對Fe-Si-B非晶合金之玻璃形成能力及軟磁性質研究」,國立臺北科技大學,碩士論文,民國101年。
[33] Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses ”, Acta Metallurgica, Vol.50, pp. 3501–3512, (2002).
[34] X. H. Du, J. C. Haung, C. T. Liu and Z. P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, Applied Physics Letters, Vol.101, pp.86-108, (2007).
[35] A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, L. Schultz , “Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses”, Materials Science and Engineering A, Vol.267, pp.294-300, (1999).
[36] W.H. Peter, R.A. Buchanan*, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael Jr., J.L. Wright,“Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state”, Intermetallics, Vol.10, pp.1157-1162, (2002).
[37] M.L. Morrison, R.A. Buchanan, A. Peker, W.H. Peter, J.A. Horton, P.K. Liaw, “Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass”, Intermetallics, Vol. 12, pp.1177-1181, (2004).
[38] U. Kamachi Mudali, S. Baunack, J. Eckert, L. Schultz, A. Gebert,“Pitting corrosion of bulk glass-forming zirconium-based alloys”, Journal of Alloys and Compounds, Vol. 377, pp. 290-297, (2004).
[39] D. Zander, B. Heisterkamp, I. Gallino, “Corrosion resistance of Cu–Zr–Al–Y and Zr–Cu–Ni–Al–Nb bulk metallic glasses”, Journal of Alloys and Compounds, Vol. 434-435, pp. 234-236, (2007).
[40] F. Kellou, A. Benchettar, S. Amara, “Temperature and microstructure effects on corrosion behavior of annealed Fe–xTi–yC alloys in sulphuric acid solution”, Materials Chemistry and Physics, Vol.106, pp.198-208, (2007).
[41] H.B. Lu, L.C. Zhang, A. Gebert, L. Schultz, “Pitting corrosion of Cu–Zr metallic glasses in hydrochloric acid solutions”, Journal of Alloys and Compounds, Vol.462, pp.60-67, (2008).
[42] N. Homazava, A. Shkabko, D. Logvinovich, U. Kra¨henbu¨ hl , A. Ulrich, “Element-specific in situ corrosion behavior of Zr–Cu–Ni–Al–Nb bulk metallic glass in acidic media studied using a novel microcapillary flow injection inductively coupled plasma mass spectrometry technique”, Intermetallics, Vol.16, pp.1066-1072, (2008).
[43] X.P. Nie, X.H. Yang, J.Z. Jiang, “Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses”, Journal of Alloys and Compounds, Vol.481, pp. 498-502, (2009).
[44] N. Padhy, S. Ningshen, U. Kamachi Mudali, “Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media”, Journal of Alloys and Compounds, Vol. 503, pp.50-56, (2010).
[45] A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, “The corrosion behaviour of Zr-based bulk metallic glasses in 0.5 M NaCl solution”, Corrosion Science, Vol.53, pp.2778-2784, (2011).
[46] C.Y. Chuang, Y.C. Liao, Jyh-Wei Lee, Chia-Lin Li, Jinn P. Chu, Jenq-Gong Duh, “Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution”, Thin Solid Films, Vol.529, pp.338-341, (2012).
[47] X.P. Nie, X.H. Yang, Y. Ma, L.Y. Chen, K.B. Yeap, K.Y. Zeng, D. Li, J.S. Pan, X.D. Wang, Q.P. Cao,S.Q. Ding, J.Z. Jiang,“Thermal oxidation effect on corrosion behavior of Zr46Cu37.6Ag8.4Al8 bulk metallic glass” Intermetallics, Vol. 22, pp.84-91, (2012).
[48] H.H.Uhlig, R.W.Revie, Corrosion and Corrosion Control-3th, John Wiley & Sons Inc, Canda, (1985).
[49] W.S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers & Scientists, PairODocs Publications, (1994).
[50] J.O’M. Bockris, A. K.N. Reddy, Modern Electrochemistry-2nd,Plenum Press,New York & London, (1998).
[51] E. Barsoukov, J.R. Macdonald ,Impedance Spectroscopy Theory,Experiment,and Applications-2nd,John Wiley & Sons Inc,New Jersy, (2005).
[52] H. Ezuber, A. El-Houd, F. El-Shawesh , Materials and Design, “A study on the corrosion behavior of aluminum alloys in seawater”, Materials & Design, Vol.29 , pp.801-805, (2008).
[53] S. Ahn, H. Kwon, D.D. Macdonald, Journal of The Electrochemical Society, “Role of Chloride Ion in Passivity Breakdown on Iron and Nickel”, Journal of The Electrochemical Society, Vol.152(11) , pp.B482–B490, (2005).
[54] A.A. El-Meligi , “Hydrogen production by aluminum corrosion in hydrochloric acid using inhibitiors to control hydrogen evolution”, International Journal of Hydrogen Energy,Vol.36,pp.10600–10607,(2010).
[55] W. Zhang, R.G. Buchheit,“Effect of ambient aging on inhibition of oxygen reduction by chromate conversion coatings” , Corrosion, Vol.59, pp.356–362, (2003).
[56] N.A. Negm , M.F. Zaki, M.M. Said, S.M. Morsy, “Inhibitory action of biodegradable modified vanillin on the corrosion of carbon steel in 1 M HCl”, Corrosion Science, Vol.53, pp.4233-4240, (2011).
[57] 劉瑞郁, 「硫脲衍生物對碳鋼在含氯離子環境中腐蝕抑制之行為」,中央大學,碩士論文,民國84年。
[58] 張志雄,「鋁在酸性溶液中孔蝕行為研究」,國立中央大學,碩士論文, 民國92年。
[59] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory,Experiment,and Applications-2nd,John Wiley & Sons Inc,New Jersy, (2005).
[60] P.B. Raja, M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media — A review”, Materials Letters,Vol.62,pp.113-116,(2008).
[61] Principles and prevention of corrosion, Denny A. Jones, p.31
[62] 國立中央大學貴重儀器中心,取自http://www.ncu.edu.tw/~ncu7020/Instrument/
[63] 國立台灣大學貴重儀器中心,取自http://hic.ch.ntu.edu.tw/~em3/
[64] T. H. Hung, J. C. Huang, J. S. C. Jang and S. C. Lu, “Improved Thermal Stability of Amorphous Zr-Al-Cu-Ni Alloys with Si and B”, Materials Transactions, JIM, Vol.48, pp.239-243, (2007).
[65] J. S. C. Jang, I. H. Wang, L. J. Chang, T. H. Hung and J. C. Huang,“Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Materials Science and Engineering A, Vol.449-451, pp.511-516, (2007).
[66] J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang and C. T. Liu, “Thermal stability and crystallization of Zr-Al-Cu-Ni based amorphous alloy added with boron and silicon”, Intermetallics, Vol.14, pp.951-956, (2006).
[67] H. S. Shin and Y. J. Jeong, “Strain rate dependence of deformation behavior in Zr-based bulk metallic glasses in the supercooled liquid region”, Journal of Alloys and Compounds, Vol.434-435, pp.40-43, (2007).
[68] D. A. Jones, Principles and prevention of corrosion, 2nd ed., Prentice- Hall Inc, (1996).
[69] J.L. Zhang, J.X. Lu, C.H. Shek, “Abrasive and corrosive behaviors of Cu-Zr-Al-Ag-Nb bulk metallic glasses”, Journal of Physics:Conference Series, Vol.144, pp.012034, (2009).
[70] X.Jiang, Y.G.Zheng, W.Ke, “Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution”, Corrosion Science, Vol.47, pp.2636-2658, (2005).
[71] 陳振宇、董澤華、郭興蓬,“利用ECN及EIS評價MoO42-及CrO42-對N80鋼的點蝕抑制作用”,第十三屆緩蝕劑會議,中國昆明,2004年。
[72] H.C. Kou, Y. Li, T.B. ZHANG, J. Li, J.S. Li, “Electrochemical corrosion properties of Zr- and Ti-based bulk metallic glasses”, Transactions of Nonferrous Metals Society of China, Vol.21, pp.552-557, (2011).
[73] D.P. Wang, S.L. Wang, J.Q. Wang, “Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass”, Corrosion Science, Vol.59, pp.88-95, (2012).
[74] K. Sato, T. Izumi, M. Iwase, Y. Show, H. Morisaki, T. Yaguchi, T. Kamino, “Nucleation and growth of nanocrystalline silicon studied by TEM, XPS and ESR”, Applied Surface Science, Vol.216, pp.376-381, (2003).
[75] A. Gebert, P.F. Gostin, L. Schultz, “Effect of surface finishing of a Zr-based bulk metallic glass on its corrosion behaviour”, Corrosion Science, Vol.52, pp.1711-1720, (2010).
[76] L.Q. Xing, G.P. Gorier, D.M. Herlach, “Cast bulk Zr57Ti5Al10Cu20Ni8 amorphous alloy with tendency of phase separation”, Materials Science and Engineering A, Vol.226-228, pp.429-433, (1997).
[77] Z. Evenson, R. Brsch, “Equilibrium viscosity, enthalpy recovery and free volume relaxation in a Zr44Ti11Ni10Cu10Be25 bulk metallic glass”, Acta Materialia, Vol. 59, pp.4404-4415, (2011).
[78] J. Datta, C. Bhattacharya and S. Bandyopadhyay, Bulletin of Materials Science, “Influence of Cl–, Br–, NO3- and SO42- ions on the corrosion behaviour of 6061 Al alloy”, Bulletin of Materials Science, Vol.28, pp.253–258, (2005).
[79] B.A. Green, P.K. Liaw, and R.A. Buchanan, 「Bulk Metallic Glasses」, pp.205-234 ,( 2005).
[80] Z. SZKLARSKA-SMIALOWSKA, 「Review of Literature on Pitting Corrosion Published Since 1960」, Corrosion, Vol.27, No.6, pp.223-233, (1971)
[81] A. Gebert, U. Kuehn, S. Baunack, N. Mattern, L. Schultz, “Pitting corrosion of zirconium-based bulk glass-matrix composites”, Materials Science and Engineering A, Vol.415, pp.242-249, (2006).
[82] 張祥麟, 「敏化304不銹鋼在含硫酸之模擬臺灣離島地下水中腐蝕行為研究」,中央大學,碩士論文,民國83年。
[83] S. Baunack, U. Kamachi Mudali, A. Gebert, “Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling”, Applied Surface Science, Vol.252, pp.162-166, (2005).
指導教授 林景崎(Jing-chie Lin) 審核日期 2013-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明