博碩士論文 100323055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:182 、訪客IP:18.191.139.25
姓名 楊言誌(Yan-Zhi Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 離散元素法模擬於重力驅動顆粒流場之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 顆粒崩塌流場普遍存在於工業界、自然界或是日常生活中。工業界中包括如儲槽 (hopper) 及旋轉鼓 (rotating drum) 等,而自然界中如雪崩、山崩或土石流等災害也可列為顆粒流的一環。故此類顆粒崩塌流場的相關學術研究於近年來備受重視,也越來越多學者發表相關研究成果。本論文主要以線性軟球模式的離散元素法 (Discrete element method, DEM) 來模擬在傾斜矩形流槽中,由重力所驅動之顆粒崩塌流場的運動行為。本論文將採用Particle Flow Code in 3D 模擬軟體,並利用不同控制參數去探討各阻礙物對顆粒崩塌流場的運動行為及相關物理機制之影響。本論文中,為讓流場產生劇烈變化,將在流槽中設置不同半徑的半圓柱形阻礙物,使流場中產生震波,探討不同阻礙物大小對於整體流場的影響,包括流場高度、流場速度、顆粒體積佔有率、旋轉角速度、配位數(coordination number)、顆粒接觸力、慣性數(inertial number)、組構及組構張量(fabric tensor)八個分析指標在流動方向的變化及相關物理機制。
摘要(英) Granular avalanches flows are widely found in nature and industrial applications. In industrial applications, they can be found as hoppers and rotation drums and, in the nature, they are in the form of avalanches, landslides, mudflows. Granular flows have received significant attention by researchers and scholars. This study is performed based on a linear soft-sphere model discrete element method (DEM) has been used to simulated performance of granular flow driven by the gravity in an inclined rectangular chute. DEM calculations were done by using commercial simulation software called PFC3D. An inclined rectangular chute was set up by using different control parameter in order to analysis and evaluates the overall flow performance. Additionally, in order to simulate changes in the flow fields were establishment in a different semi-circular cylinder obstacle radius of the chute to generate shock waves. It allowed exploring and analyzing the flow field in different size of obstructions that were affecting the overall field which included flow height, flow velocity, solid fraction, angular velocity, coordination number, contact force, fabric and fabric tensor.
關鍵字(中) ★ 離散元素法
★ 組構
★ 組構張量
★ 顆粒崩塌
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 III
附圖目錄 VI
附表目錄 X
符號說明 XI
第一章 1
簡介 1
1.1 前言 ………………………………………………………………………………1
1.2 顆粒崩塌流介紹 3
1.3 數值模擬的發展 4
1.4 研究動機與論文架構 6
第二章 8
數值模擬方法與各分析指標之介紹 8
2.1 離散元素法 9
2.2 計算流程(Calculation cycle) 11
2.2.1 力與位移法則(Force-Displacement Law) 11
2.2.2 運動定律(Law of Motion) 14
2.3 模擬操作流程與參數 16
2.4 分析指標計算方法 19
2.4.1 分析指標-流體深度 20
2.4.2 分析指標-流場速度 20
2.4.3 分析指標-顆粒體積佔有率 21
2.4.4 分析指標-旋轉角速度 22
2.4.5 分析指標-配位數(coordination number) 23
2.4.6 分析指標-顆粒接觸力(Contact force) 24
2.4.7 分析指標-慣性數(Inertial number) 24
2.4.8 分析指標-組構及組構張量(Fabric tensor) 25
第三章 38
結果與討論 38
3.1 流體深度 39
3.2 流場速度 40
3.3 顆粒體積佔有率 41
3.4 旋轉角速度 42
3.5 配位數 43
3.6 顆粒接觸力 45
3.7 慣性數 46
3.8 組構及組構張量 48
第四章 82
結論 82
參考文獻 85
附錄A………………………………………...………………………………………92
參考文獻 1. Hsiau, S. S., Hsu, C. C., and Smid, J., “The discharge of fine silica sands in a silo,” Phys. of Fluids, Vol. 22, 043306, 2002.
2. Huang, Q., Zhang, H., and Zhu, J., “Experimental study on fluidization offine powders in rotating drums with various wall friction and baffled rotating drums,” Chem. Eng. Sci., Vol. 64 , 2234-2244, 2009.
3. Legros, F., “The mobility of long-runout landslides,” Eng. Geol. pp. 301-331,2002.
4. Ng, C. W. W. & Q. Shi, “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage,” Computers and Geotechnics, Vol. 22(1), pp. 1-28, 1998.
5. Campbell, C. S. and Brennen,C. E., “Chute flow of granular material:some computer simulation,” J. Fluid Mech., Vol. 52, pp. 72-178, 1982.
6. Gray, J. M. N. T., Tai, Y. C., Noelle, S., “Shock waves, dead zones and particle-free regions in rapid granular free-surface flows,” J. Fluid Mech., Vol. 491, pp. 161-181, 2003.
7. Gray, J. M. N. T. and Cui, X., “Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows,” J. Fluid Mech., Vol. 579, pp. 113-136, 2007.
8. Faun, T., Naaim, M., Bertrand, D., Lachamp, P., Naaim-Bouvet, F., “Varying dam height to shorten the run-out of dense avalanche flows: developing a scaling law from laboratory experiments,” Surv. Geophys., Vol. 24, pp. 555-568, 2003.
9. Faug, T., Gauer, P., lied, K., and Naaim, M., “Overrun length of avalanches overtopping catching dams: Cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches,” J. Geophys. Res., Vol. 113, F03009, 2008.
10. Hákonardóttir, K. M., Hogg, A. J., Jóhannesson, T., Kern, M., and Tiefenbacher, F., “Large-scale avalanche braking mound and catching dam experiments with snow: A study of the airborne jet,” Surv. Geophys., Vol. 24, pp. 543-554, 2003.
11. Hákonardóttir, K. M., Hogg, A. J., and Batey, J., “Flying avalanches,” Geophys. Res. Lett., Vol. 30, 2191, 2003.
12. Hákonardóttir, K. M. and Hogg, A. J., Johannesson, T., and Tomasson, G. G., “A laboratory study of the retarding effects of braking mounds on snow avalanches,” J. Glaciol., Vol. 49, pp. 191-200, 2003.
13. Savage, S.B. and Hutter, K., “The motion of a finite mass of granular material down a rough incline,” J. Fluid Mech.,Vol. 199, pp. 177-215, 1989.
14. Hutter, K., Siegel, M., Savage, S. B., and Nohguchi, Y., “Two-dimensional spreading of a granular avalanche down an inclined plane. part i: Theory,” ACTA Mech., Vol. 100, pp. 37-68, 1999.
15. Gray, J. M. N. T., Wieland, M., and Hutter, K., “Gravity-driven free surface flow of granular avalanches over complex basal topography,” Proc Royal Soc., Vol. 455, pp. 1841-1874, 1999.
16. Pudasaini, S. P. and Hutter, K., “Rapid shear flows of dru granular massis down curved and twisted channels,” J. Fluid Mech., Vol. 495, pp. 193-208, 2003.
17. Patra, A. K., Bauer, A. C., Nichita, C. C., Pitman, E.B., Sheridan, M.F., Bursik, M., Rupp, B., Webber, A., Stinton, A.J., Namikawa, L.M., and Renschler, C.S., “Parallel adaptive numerical simulation of dry avalanches over natural terrain,” J. Volcanol. Geotherm. Res., Vol. 139, pp. 1-21, 2005.
18. Tai, Y. C., and Kuo, C. Y., “A new model of granular flows over general topography with erosion and deposition,” Acta Mech. Vol. 199, pp. 71-96, 2008.
19. Iverson, R. M., “The physics of debris flows,” Rev. Geophys., Vol. 35, pp. 245-296, 1997.
20. Iverson, R. M. and Denlinger, R. P., “Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory,” J. Geophys. Res. Vol. 106, pp. 537-552, 2001.
21. Shi, G. H.,“Discontinuous Deformation Analysis, A new Numerical Model for the Static and Dynamics of Block systems,” Ph. D. Thesis, Department of Civil Engineering, University of California at Berkeley ,1988.
22. Shi, G. H., “Modeling Dynamic Rock Failure by Discontinuous Deformation Analysis with Simplex Integrations,” Geotechnical Lab., U.S. Army Engineer Waterways Experiment Station, Viskburg, MS 39180-6199 ,1995.
23. Cundall, P. A., “A computer model for simulating progressive largescale movements in blocky rock systems,” in Proceedings of the Symposium of the International Society of Rock Mechanics(Nancy, France, 1971), Vol. 1, Paper No. II-8, 1971.
24. Sibille L, Donze´ F.-V., Nicot F, Chareyre B, Darve F , “From bifurcation to failure in a granular material: a DEM analysis,” Acta Geotech., Vol. 3, pp. 15–24, 2008.
25. Labra C, Rojek J, Onate E, Zarate F, “Advances in discrete element modelling of underground excavations,” Acta Geotech ,Vol. 3, pp. 317–322, 2008.
26. Harald, T., Wang, Y., Chiou, M. C., “Flow-obstacle interaction in rapid granular avalanchesDEM simulation and comparison with experiment,” Granular Matter, Vol. 11, pp. 209-220, 2009.
27. Mantle, M. D., Sederman, A. J., Gladden, L. F., Huntley, J. M., Martin, T. W., Wildman, R. D., and Shattuck, M. D., “MRI investigations of particle motion within a three-dimensional vibro-fluidized granular bed,” Powder Technol.,Vol. 179, pp. 164-169, 2008.
28. Harald, T., Wang, Y., Pudasaini, S. P., Borja, R. I., Wu, w., “DEM simulation of impact force exerted by granular flow on rigid structures,” Acta Geotech , 2010.
29. Tsuji, Y., Kawaguchi, T., and Tanaka, T., “Discrete particle simulation of two- dimensional fluidized bed,” Powder Technol., Vol 77, pp. 79-87, 1993.
30. Langston, P. A., Tüzün, U., and Heyes, D. M., “Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions,” Chem. Eng. Sci., Vol. 50, pp. 967-987, 1995.
31. Lan, Y. and Rosato, A. D., “Convection related phenomena in granular dynamics simulations of vibrated beds,” Phys. Fluids, Vol. 9, pp. 3165-3624, 1997.
32. Lätzel, M., Luding, S., and Herrmann, H. J., “Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell,” Granul. Matter, Vol. 2, pp. 123-135, 2000.
33. Cundall, P. A., and Strack, O. D. L., “A discrete numerical model for granular assembiles,” Géotechnique, pp. 47-65, 1979.
34. Cundall, P. A., “Distinct element method of rock and soil structure,” in Analytical nad Computational Methods in Engineering Rock Mechanics, Ch. 4, pp. 129-163. E. T. Brown, ed. London : Allen & Unwin., 1987.
35. Thomas, S., “Coefficient of restitution for viscoelastic spheres : The effect of delayed recovery,” Phys. Rev. E, Vol. 78, 051304, 2008.
36. Rosa, R., “Coefficient of restitution of colliding viscoelastic spheres,” Physical Review, E, Vol. 60, No. 4, 1999.
37. C. Gonzalez-Montellano, “Determination of the mechanical properties of maize grains and olives required for use in DEM simulations,” J. of Food Eng., Vol. 111, pp. 553-562, 2012.
38. Harald, T. “Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment,” Granular Matter, Vol. 11, pp. 209-220, 2009.
39. Wassgren, C. R., “Vibration of granular materials. Ph. D. thesis,” California Institute of Technology, CA, U.S.A, 1997.
40. Karion, A., “Couette Flows of Granular Materials: Mixing, Rheology, and Energy Dissipation. Ph. D. thesis,” California Institute of Technology, CA, U.S.A, 2000.
41. Asmar, B. N., Langston, P. A., Matchett, A. J., “A generalized mixing index in distinct element method simulation of vibrated particulate beds,” Granular Matter, Vol. 4, pp. 129-138, 2002.
42. Nakagawa, M., Altobelli, S. A., Caprihan, A., Fukushima, E., and Jeong, E. K., “Non-invasive measurements of granular flows by magnetic resonance imaging,” Exp. Fluids, Vol. 16, pp. 54-60, 1993.
43. Pugh, J. F. and Wilson, K. C., “Velocity and concentration distributions in sheet flow above plane beds,” J. Hydr. Engrg., Vol. 125, pp. 117-126, 1999.
44. Kawaguchi, T., Tsutsumi, K., and Tsuji, Y., “MRI measurement of granular motion in a rotating drum,” Part. Syst. Charact., Vol. 23, pp. 266-271, 2006.
45. Mantle, M. D., Sederman, A. J., Gladden, L. F., Huntley, J. M., Martin, T. W., Wildman, R. D., and Shattuck, M. D., “MRI investigations of particle motion within a three-dimensional vibro-fluidized granular bed,” Powder Technol., Vol. 179, pp. 164-169, 2008.
46. Gray, W. A., “ The packing of solid particles,“ Chapman and Hall, London, 1969.
47. Yang, R. Y., Zou, R. P., and Yu, A. B., “Computer simulation of the packing of fine particles,” Phys. Rev., E, Vol. 62, No. 3, 2000.
48. Cruz, F. da, Emam, S., Prochnow, M., Roux, J. –N., and Chevoir, F., “Rheophysics of dense granular flows: discrete simulation of plane shear flows,” Phys. Rev. E72, 021309, 2005.
49. Azema, E., Descantes, Y., Roquet, N., Roux, J. –N., and Chevoir, F., “Discrete simulation of dense flows of polyhedral grains down a rough inclined plane,” Phys. Rev. E86, Vol. 3, pp. 1-14, 2012.
50. Hinrichsen, H., and Wolf, D., “The physics of granular media,” Wiley-VCH, Weinheim, 2004.
51. Goldhirsch, I., “Rapid granular flows,” Annu. Rev. Fluid Mech., Vol. 35,pp 267, 2003.
52. Liu, A. J., and Nagel, S. R., “Jamming is not just cool anymore,” Nature, Vol. 396 (N6706),pp 21, 1998.
53. Jop, P., Forterre, Y., and Pouliquen, O., “A constitutive law for dense granular flows,“ Nature, Vol. 441, pp 727-730, 2006.
54. Brewer, R., “Fabric and mineral analysis of soils,” John Wiley and Sons, Inc., pp. 129-158, 1964.
55. Oda, M., “Initial fabrics and their relations to mechanical properties of granular material,” Soils and Foundations, Vol. 12, No. 1, pp.17-36 ,1972.
56. Brady, B. H. G. and E. T. Brown, “Rock mechanics,” 2rd edn, Chapman & Hall, pp. 518-523 ,1993.
57. Oda, M., Nemat-Nasser, S., Konishi, J., “Stress-induced anisotropic in granular masses,” Soils and Foundations, Vol. 25, No. 3, pp.85-97, 1985.
58. J.Bathurst, R. and Rothenburg, L., “Observations on stress-force-fabric relationships in idealized granular materials,” Mech. Of Materials, Vol. 9, pp.65-80, 1990.
59. Satake, M., “Fabric tensor in granular materials,” Vermeer, P.A., Luger, H.J. eds. Proceedings of the IUTAM symposium on Deformation and Failure of Granular Materials, Delft, Balkema, Amsterdam , pp. 63–68 , 1982.
60. Hanes, D. M. and Walton, R., “Simulation and physical measurement of glass spheres flowing down a bumpy incline,” Powder Technol., Vol. 109, pp. 133-144, 2000.
61. Koval, G., Roux, J.-N., Corfdir, A. and Chevoir, F., “Annular shear of cohesionless granular materials : from inertial to quasistatic regime,” Rheol. Acta 48, Vol. 925, 2009.
62. GDR MiDi, “On dense granular flows,” Eur. Phys. J. E, Vol.14, pp. 341-356, 2004.
63. Ouadfel, H., and Rothenburg, L., “ ‘Stress-force-fabric’relationship for assemblies of ellipsoids,“ Mechanics Of Materials, Vol. 33, pp. 201-221, 2001.
64. 黃昱傑, 陳國慶, “顆粒材料二維及三維剪切帶之識別, ”台灣大學-應用力學研究所碩士論文, 2011.
65. 邱上育, 蕭述三, “半圓柱阻礙物對重力驅動顆粒流場之影響, ”中央大學-機械工程學系碩士論文, 2011.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2013-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明