參考文獻 |
Reference
1. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, vol. 33, pp. 8228-39, 2012.
2. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, vol. 418(6893), pp. 41-9, 2002.
3. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, vol. 112(8), pp. 4507-40, 2012.
4. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, vol. 448(7151). pp. 313-7, 2007.
5. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, vol. 126(4), pp. 663-76, 2006.
6. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, vol. 318(5858), pp. 1917-20, 2007.
7. Lin, S.L., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like stat. RNA, vol. 14(10), pp. 2115-24, 2008.
8. Zhou, H., et al., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, vol. 4(5), pp. 381-4, 2009.
9. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, vol. 111(5), pp. 3021-35, 2011.
10. Favre, G., et al., Differences between graft product and donor side effects following bone marrow or stem cell donatio. Bone Marrow Transplant, vol. 32(9), pp. 873-80, 2003.
11. Bosi, A. and B. Bartolozzi, Safety of bone marrow stem cell donation: a review. Transplant Proc, vol. 42(6), pp. 2192-4, 2010.
12. Gratwohl, A., et al., Predictability of hematopoietic stem cell transplantation rates. Haematologica, vol. 92(12), pp. 1679-86, 2007.
13. Hamidieh, A.A., et al., Autologous stem cell transplantation as treatment modality in a patient with relapsed pancreatoblastoma. Pediatr Blood Cancer, vol. 55(3), pp. 573-6, 2010.
14. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, vol. 85A(4), pp. 853-861, 2008.
15. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. J Cell Biochem, vol. 98(5), pp. 1076-84, 2006.
16. Scadden, D.T., The stem-cell niche as an entity of action. Nature, vol. 441(7097), pp. 1075-9, 2006.
17. Horwitz, E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A, vol. 99(13), pp. 8932-7, 2002.
18. Arinzeh, T.L., et al., Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am, vol. 85-A(10), pp. 1927-35, 2003.
19. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, vol. 284(5411), pp. 143-7, 1999.
20. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, vol. 24(5), pp. 1294-301, 2006.
21. Crisan, M., et al., A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, vol. 3(3), pp. 301-13, 2008.
22. Brighton, C.T. and R.M. Hunt, Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am, vol. 73(6), pp. 832-47, 1991.
23. Netter, F.H., Musculoskeletal system : anatomy, physiology, and metabolic disorders. U.S.A : Indoo. 1987.
24. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, vol. 7(2), pp. 211-28, 2001.
25. Mizuno, H., M. Tobita, and A.C. Uysal, Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells, vol. 30(5), pp. 804-10, 2012.
26. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, vol. 13(12), pp. 4279-95, 2002.
27. van Dijk, A., et al., Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res, vol. 334(3), pp. 457-67, 2008.
28. Schaffler, A. and C. Buchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, vol. 25(4), pp. 818-27, 2007.
29. Oedayrajsingh-Varma, M.J., et al., Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, vol. 8(2), pp. 166-77, 2006.
30. Mitchell, J.B., et al., Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, vol. 24(2), pp. 376-85, 2006.
31. Zaragosi, L.E., G. Ailhaud, and C. Dani, Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells, vol. 24(11), pp. 2412-9, 2006.
32. Rubio, D., et al., Spontaneous human adult stem cell transformation. Cancer Res, vol. 65(8), pp. 3035-9, 2005.
33. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, vol. 6(4), pp. 483-95, 2004.
34. Rider, D.A., et al., Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells, vol. 26(6), pp. 1598-608, 2008.
35. Mochizuki, T., et al., Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum, vol. 54(3), pp. 843-53, 2006.
36. Stein, G.S., et al., Transcriptional control of osteoblast growth and differentiation. Physiol Rev, vol. 76(2), pp. 593-629, 1996.
37. Martin, I., et al., Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res, vol. 55(2), pp. 229-35, 2001.
38. Noth, U., et al., Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A, vol. 83(3), pp. 626-35, 2007.
39. Planat-Benard, V., et al., Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res, vol. 94(2), pp. 223-9, 2004.
40. Miyahara, Y., et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, vol. 12(4), pp. 459-65, 2006.
41. Strem, B.M., et al., Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, vol. 7(3), pp. 282-91, 2005.
42. Rodriguez, A.M., et al., Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, vol. 201(9), pp. 1397-405, 2005.
43. Sefcik, L.S., et al., Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med, vol. 2(4), pp. 210-20, 2008.
44. PP, B.M., et al., Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med, vol. 16(12), pp. 1077-85, 2005.
45. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, vol. 126(4), pp. 677-89, 2006.
46. Ward, D.F., Jr., et al., Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev, vol. 16(3), pp. 467-80, 2007.
47. Zscharnack, M., et al., Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs, vol. 190(2), pp. 81-93, 2009.
48. Zimmerlin, L., et al., Stromal vascular progenitors in adult human adipose tissue. Cytometry A, vol. 77(1), pp. 22-30, 2010.
49. Yoshimura, K., et al., Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol, vol. 208(1), pp. 64-76, 2006.
50. Civin, C.I., et al., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol, vol. 133(1), pp. 157-65, 1984.
51. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, vol. 275(5302), pp. 964-7, 1997.
52. Pusztaszeri, M.P., W. Seelentag, and F.T. Bosman, Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem, vol. 54(4), pp. 385-95, 2006.
53. Lin, G., et al., Defining stem and progenitor cells within adipose tissue. Stem Cells Dev, vol. 17(6), pp. 1053-63, 2008.
54. Traktuev, D.O., et al., A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res, vol. 102(1), pp. 77-85, 2008.
55. Zannettino, A.C., et al., Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol, vol. 214(2), pp. 413-21, 2008.
56. Sengenes, C., et al., Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol, vol. 205(1), pp. 114-22, 2005.
57. Higuchi, A., et al., Cell separation between mesenchymal progenitor cells through porous polymeric membranes. J Biomed Mater Res B Appl Biomater, vol. 74(1), pp. 511-9, 2005.
58. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. J Biomed Mater Res A, vol. 78(3), pp. 491-9, 2006.
59. Rodbell, M., Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem, vol. 241(1), pp. 130-9, 1966.
60. Rodbell, M., The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem, vol. 241(17), pp. 3909-17, 1966.
61. Rodbell, M. and A.B. Jones, Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem, vol. 241(1), pp. 140-2, 1966.
62. Kurita, M., et al., Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg, vol. 121(3), pp. 1033-41; discussion 1042-3, 2008.
63. Higuchi, A., et al., Peripheral blood cell separation through surface-modified polyurethane membranes. J Biomed Mater Res A, vol. 68(1), pp. 34-42, 2004.
64. Higuchi, A., et al., Separation of Hematopoietic Stem and Progenitor Cells from Human Peripheral Blood Through Polyurethane Foaming Membranes Modified with Several Amino Acids. Journal of Applied Polymer Science, vol. 114(2), pp. 671-679, 2009.
65. Ormerod, M.G., ed. Flow cytometry : A practical approach, 3rd Edition. Oxford University Press, 2000.
66. Watson, J., ed. Introduction to flow cytometry, First paperback edition. Cambridge University Press, 2004.
67. Mullis, K., et al., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, vol. 51 Pt 1, pp. 263-73, 1986.
68. Mullis, K.B., The Polymerase Chain-Reaction (Nobel Lecture). Angewandte Chemie-International Edition in English, vol. 33(12), pp. 1209-1213, 1994.
69. Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction. Methods Mol Biol, vol. 226, pp. 3-6, 2003.
70. Pavlov, A.R., et al., Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol, vol. 22(5), pp. 253-60, 2004.
71. Rychlik, W., W.J. Spencer, and R.E. Rhoads, Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res, vol. 18(21), pp. 6409-12, 1990.
72. Thweatt, R., S. Goldstein, and R.J. Shmookler Reis, A universal primer mixture for sequence determination at the 3’ ends of cDNAs. Anal Biochem, vol. 190(2). pp. 314-6, 1990.
73. Krawetz, S.A., R.T. Pon, and G.H. Dixon, Increased efficiency of the Taq polymerase catalyzed polymerase chain reaction. Nucleic Acids Res, vol. 17(2), pp. 819, 1989.
74. Sarkar, G., S. Kapelner, and S.S. Sommer, Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res, vol. 18(24), pp. 7465, 1990.
75. Wu, D.Y., et al., The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol, vol. 10(3), pp. 233-8, 1991.
76. Yap, E.P. and J.O. McGee, Short PCR product yields improved by lower denaturation temperatures. Nucleic Acids Res, vol. 19(7), pp. 1713, 1991.
77. Olsen, B.R., A.M. Reginato, and W. Wang, Bone development. Annu Rev Cell Dev Biol, vol. 16, pp. 191-220, 2000.
78. Harada, S. and G.A. Rodan, Control of osteoblast function and regulation of bone mass. Nature, vol. 423(6937), pp. 349-55, 2003.
79. Lian, J.B., et al., Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord, vol. 7(1-2), pp. 1-16, 2006.
80. Romero-Prado, M., et al., Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. J Cell Biochem, vol. 98(6), pp. 1457-70, 2006.
81. Lengner, C.J., et al., Activation of the bone-related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mech Dev, vol. 114(1-2), pp. 167-70, 2002.
82. Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, vol. 89(5), pp. 747-54, 1997.
83. Lengner, C.J., et al., Nkx3.2-mediated repression of Runx2 promotes chondrogenic differentiation. J Biol Chem, vol. 280(16), pp. 15872-9, 2005.
84. Provot, S., et al., Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development, vol. 133(4), pp. 651-62, 2006.
85. Murtaugh, L.C., et al., The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell, vol. 1(3), pp. 411-22, 2001.
86. Eames, B.F., P.T. Sharpe, and J.A. Helms, Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Dev Biol, vol. 274(1), pp. 188-200, 2004.
87. Guo, J., et al., PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol, vol. 292(1), pp. 116-28, 2006.
88. Iwamoto, M., et al., Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthritis Cartilage, vol. 11(1), pp. 6-15, 2003.
89. Li, T.F., et al., Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res, vol. 299(1), pp. 128-36, 2004.
90. Pratap, J., et al., The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol, vol. 25(19), pp. 8581-91, 2005.
91. Zelzer, E., et al., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev, vol. 106(1-2), pp. 97-106, 2001.
92. ten Dijke, P., et al., Signal transduction of bone morphogenetic proteins in osteoblast differentiation. Journal of Bone and Joint Surgery-American, vol. 85A, pp. 34-38, 2003.
93. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth Factors, vol. 22(4), pp. 233-241, 2004.
94. Hassan, M.Q., et al., Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol, vol. 24(20), pp. 9248-61, 2004.
95. Ferrari, D., et al., Dlx-5 in limb initiation in the chick embryo. Dev Dyn, vol. 216(1), pp. 10-5, 1999.
96. Bidder, M., T. Latifi, and D.A. Towler, Reciprocal temporospatial patterns of Msx2 and Osteocalcin gene expression during murine odontogenesis. J Bone Miner Res, vol. 13(4), pp. 609-19, 1998.
97. Depew, M.J., et al., Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat, vol. 207(5), pp. 501-61, 2005.
98. Holleville, N., et al., BMP signals regulate Dlx5 during early avian skull development. Dev Biol, vol. 257(1), pp. 177-89, 2003.
99. Dodig, M., et al., Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation. Dev Biol, vol. 209(2), pp. 298-307, 1999.
100. Lee, M.H., et al., BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun, vol. 309(3), pp. 689-94, 2003.
101. Lee, M.H., et al., BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem, vol. 278(36), pp. 34387-94, 2003.
102. Ichida, F., et al., Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem, vol. 279(32), pp. 34015-22, 2004.
103. Yoshizawa, T., et al., Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol Cell Biol, vol. 24(8), pp. 3460-72, 2004.
104. Cheng, S.L., et al., MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem, vol. 278(46), pp. 45969-77, 2003.
105. Balint, E., et al., Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem, vol. 89(2), pp. 401-26, 2003.
106. Lee, M.H., et al., Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem, vol. 280(42), pp. 35579-87, 2005.
107. Shirakabe, K., et al., Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells, vol. 6(10), pp. 851-6, 2001.
108. Hassan, M.Q., et al., Hoxa10: A BMP2-responsive gene activates Runx2 and regulates osteogenesis. Journal of Bone and Mineral Research, vol. 20(9), pp. S5-S5, 2005.
109. Nakashima, K., et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, vol. 108(1), pp. 17-29, 2002.
110. Kim, Y.J., et al., The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene, vol. 366(1), pp. 145-51, 2006.
111. Pratap, J., et al., Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res, vol. 63(17), pp. 5357-62, 2003.
112. Xiao, G., et al., Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem, vol. 280(35), pp. 30689-96, 2005.
113. Gutierrez, S., et al., CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J Biol Chem, vol. 277(2), pp. 1316-23, 2002.
114. McCarthy, T.L., et al., Runt domain factor (Runx)-dependent effects on CCAAT/ enhancer-binding protein delta expression and activity in osteoblasts. J Biol Chem, vol. 275(28), pp. 21746-53, 2000.
115. Selvamurugan, N., et al., Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J Biol Chem, vol. 273(17), pp. 10647-57, 1998.
116. Yang, X., et al., ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell, vol. 117(3), pp. 387-98, 2004.
117. Otto, F., et al., Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, vol. 89(5), pp. 765-71, 1997.
118. Komori, T., Regulation of osteoblast differentiation by transcription factors. J Cell Biochem, vol. 99(5), pp. 1233-9, 2006.
119. Puchacz, E., et al., Chromosomal localization of the human osteocalcin gene. Endocrinology, vol. 124(5), pp. 2648-50, 1989.
120. Cancela, L., et al., Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene. J Biol Chem, vol. 265(25), pp. 15040-8, 1990.
121. Lee, N.K., et al., Endocrine regulation of energy metabolism by the skeleton. Cell, vol. 130(3), pp. 456-69, 2007.
122. Nomura, S., et al., Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol, vol. 106(2), pp. 441-50, 1988.
123. Kuhn, K., et al., The structure of type IV collagen. Ann N Y Acad Sci, vol. 460, pp. 14-24, 1985.
124. Ashizawa, N., et al., Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. J Clin Invest, vol. 98(10), pp. 2218-27, 1996.
125. Murry, C.E., et al., Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol, vol. 145(6), pp. 1450-62, 1994.
126. Ikeda, T., et al., Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest, vol. 92(6), pp. 2814-20, 1993.
127. Uaesoontrachoon, K., et al., Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro. Int J Biochem Cell Biol, vol. 40(10), pp. 2303-14, 2008.
128. Merry, K., et al., Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci, vol. 104 ( Pt 4), pp. 1013-20, 1993.
129. Choi, S.T., et al., Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford), vol. 47(12), pp. 1775-9, 2008.
130. Reinholt, F.P., et al., Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A, vol. 87(12), pp. 4473-5, 1990.
131. Ho, M.H., et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, vol. 25(1), pp. 129-138, 2004.
132. Dai, W.D., et al., The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials, vol. 31(8), pp. 2141-2152, 2010.
133. Higuchi, A., et al., Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. Journal of Membrane Science, vol. 366(1-2), pp. 286-294, 2011. |