博碩士論文 100324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.118.146.180
姓名 陳俐伃(Li-Yu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類脂肪幹細胞的膜純化法與分化能力研究
(Purification and Differentiation of Human Adipose-Derived Stem Cells through Silk Screen/PLGA Hybrid Membranes by Membrane Filtration Method)
相關論文
★ 人類幹細胞培養於熱敏感奈米片段材料之研究★ 抗癌藥物的鑑定性用於分析大腸癌中癌幹細胞之研究
★ 利用具有奈米片段的生醫材料進行純化及去除癌症幹細胞★ 羊水間葉幹細胞培養於細胞外間質及材料硬度/彈性表面,其分化能力及多能性之研究
★ 人類羊水間葉幹細胞培養於具有奈米片段與最佳表面硬度的生醫材料,其增殖與成骨分化能力★ 多能幹細胞在無異種條件下分化為間充質幹細 胞的生物材料比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類脂肪幹細胞於再生醫學生上具有優勢的幹細胞來源,由於它具有低手術傷害性及可以大量取得等優點。此外,人類脂肪幹細胞具有分化成中胚層細胞的能力,像是骨細胞、軟骨細胞、肌肉細胞等;甚至能分化成外胚層的細胞,像是神經細胞。因此脂肪幹細胞在再生醫學與組織工程學上被視為極具潛力的幹細胞來源。
目前最傳統的組織純化細胞方式為細胞培養法,但這種方法需要長時間的培養與繼代。螢光活性細胞分選 (FACS)和磁力活性細胞分選(MACS)也常選用作為組織細胞的純化萃取,這種利用抗體專一性分離的方法,可能有抗體病毒汙染和高成本的疑慮。而本研究中的膜分離法具有簡單快速等優點,且分離過程在完全無汙染的環境中進行,此項研究試圖從人類脂肪組織中萃取出含有SVF的初代細胞溶液,快速萃取出可表現脂肪幹細胞表面標誌且具有分化能力細胞。
我們使用傾注式的膜過濾法,使用自製的絲綢/聚乳酸-甘醇酸(silk screen/PLGA)合成膜,因絲綢為天然的蛋白質纖維,而聚乳酸-甘醇酸則擁有優良的生物降解性及生物相容性。在初代細胞通過自製的過濾膜後所得之細胞溶液稱之為過濾液,然後再由相反方向注入培養液所得到未能通過膜的細胞之細胞溶液稱之為回收液。本研究中探討初代細胞液的體積及細胞密度的影響,藉由流式細胞儀分析細胞表面標誌和經由誘導分化培養基培養後的基因表現、鹼性磷酸酶活性及Alizarin red & von Kossa staining測試細胞的分化能力,研究結果顯示出18ml細胞密度為500,000 cells/ml的初代細胞溶液,擁有較高的間葉幹細胞表現量及分化能力。由此可以證明人類脂肪幹細胞可以經由膜過濾法(使用自製的膜)被分離在過濾液中。
摘要(英) Human adipose-derived stem cells (hADSC) represent one of the most promising cell candidates in the field of regenerative medicine, it can easily be extracted in large amount compared to bone marrow stem cells and also exhibits a higher proliferation rate in the medium. Furthermore, hADSCs also have a high differentiation capability into mesoderm (muscle, bone, and cartilage) and ectoderm (nerves and epidermal). The cultivation of adipose tissue cells generates hADSCs with contamination of several other types of cells. Therefore, it is necessary to purify hADSCs before using hADSCs for clinical applications. Purification of hADSCs via the cell culture process requires 5-12 days by using the conventional culture method. In this study, we developed a membrane filtration method to purify hADSCs using novel membranes where the operation time is less than 30 min to purify hADSCs from adipose tissue solution. We prepared silk screen/PLGA hybrid membranes (scaffolds) by a freeze drying method where silk screens (170 mesh size) are natural and readily biodegradable protein fibers to be used for reinforcement of the membranes. PLGA has biodegradability and biocompatibility to be used to generate a sponge pore morphology of the membranes. The average pore size of the silk screen/PLGA hybrid membranes was measured to be 3.5-7µm from scanning electron microscopy. After the preparation of home-made silk screen/PLGA hybrid membranes, we investigated the purification of hADSCs from adipose tissue solution (adipose tissue-derived stromal vascular fraction [SVF]) having different cell density by the membrane filtration method and evaluated the purification efficiency of hADSCs. The mesenchymal stem cell (MSC) markers such as CD44, CD73, and CD90 expressed by hADSCs were less than 10% in the adipose tissue solution (SVF), whereas the MSC markers in the permeate solution were found to be 30-50%, indicating hADSCs were concentrated after permeation through the silk screen/PLGA hybrid membranes, when 9 ml of the adipose tissue solution having 1×106 cells/ml was permeated through the membranes. The MSC markers of the cells after 12 days of culture of the adipose tissue solution (hADSCs purified by the conventional culture method) were found to be 60-80%. The efficiency of hADSC purification in the permeation solution through the silk screen/PLGA hybrid membranes analyzed by MSC markers depended on the cell density of the adipose tissue solution. Currently 1×106 cells/ml was the optimal cell density compared to 2×106 cells/ml or 4×106 cells/ml when 9 ml of adipose tissue solution was used. It was demonstrated that more than two fold higher osteogenic gene expression, Alizarin red staining, and von Kossa staining was observed in the permeate solution compared to the adipose tissue solution (SVF) when the cells were cultured in osteogenic induction medium for 28 days. Therefore, the hADSCs were purified in the permeation solution and demonstrated a superior capacity for osteogenic differentiation than the cells in the adipose tissue solution (SVF). The polyurethane foaming membranes having pore size of 11 µm could not purify hADSCs in the permeate solution. This result indicates that the pore size and membrane material are important factors to purify the hADSCs by the membrane filtration method. It is concluded that the hADSCs can be easily isolated through the permeation through the silk screen/PLGA hybrid membranes, whereas non-hADSCs are blocked by the sieving effect of the membrane pore size and/or adhered on the membranes.
關鍵字(中) ★ 人類脂肪幹細胞
★ 成骨分化
★ 間葉幹細胞
★ 膜純化法
關鍵字(英) ★ Human Adipose-derived Stem Cells
★ Membrane Filtration method
★ Mesenchymal stem cells
★ Osteogenic differentiation
論文目次 Index of Contents
Index of Tables i
Chapter 1 Introduction 1
1-1 Stem Cells 1
1-1-1 Embryonic stem cells (ESCs) 1
1-1-2 Induced pluripotent stem cells (iPSCs) 2
1-1-3 Hematopoietic stem cells (HSCs) 3
1-1-4 Mesenchymal stem cells (MSCs) 3
1-2 Adipose-derived stem cells 4
1-3 Differentiation capacity of adipose-derived stem cells 6
1-3-1 Lineage-specific differentiation potential 6
1-3-2 Adipogenic differentiation 6
1-3-3 Chondrogenic and osteogenic differentiation 7
1-3-4 Myogenic and cardiomyogenic differentiation 8
1-3-5 Other effective factors of MSC and ADSC differentiation 9
1-4 Immunophenotype 10
1-5 Isolation of adipose-derived stem cells 12
1-5-1 Cell isolation 12
1-5-2 Membrane purification method 14
1-6 Flow cytometry 14
1-7 Polymerase chain reaction (PCR) 17
1-7-1 Introduction of PCR 17
1-7-2 The procedure of PCR 18
1-8 Osteogenic differentiation 21
1-8-1 The process of bone development in situ 21
1-8-2 Developmental pathways for bone formation 22
1-8-3 The marker of osteogenic differentiation 26
Chapter 2 Materials and Methods 28
2-1 Materials 28
2-1-1 Chemical 28
2-1-2 Consumable goods 30
2-1-3 Instruments 31
2-2 Experimental method 31
2-2-1 PBS (phosphate buffer saline solution) preparation 31
2-2-2 Culture medium preparation 32
2-2-3 Isolation and culture of adipose tissue-derived stromal cell 32
2-2-4 Culture and passaging of ADSCs 35
2-2-4 Preparation of 1 sheet of silk screen / PLGA hybrid membranes 36
2-2-5 Cell purification (membrane filtration method) 37
2-2-6 Differentiation of adipose tissue-derived stem cell 38
2-2-7 Immunology staining 39
2-2-8 Isolation of total RNA 39
2-2-9 Reverse transcription of mRNA into cDNA 40
2-2-10 PCR (polymerase chain reaction) 42
2-2-11 Alkaline phosphatase activity 44
2-2-12 Alizarin red staining 44
2-2-13 von Kossa staining 45
2-2-14 Quantitative analysis of osteogenesis 45
2-2-15 Scanning electron microscopy (SEM) analysis 46
Chapter 3 Results and Discussion 47
3-1 Characterization of the silk screen/PLGA hybrid membranes 47
3-1-1 SEM observation 47
3-2 Characterization of human adipose derived stem cells (hADSC) 52
3-3 Purification of hADSCs from a primary adipose tissue cell solution using the membrane filtration method 54
3-3-1 Flow cytometry analysis of human adipose tissue solution 55
3-3-1-1 One sheet of silk screen/PLGA hybrid membranes using different cell density and different volume of cell solution 55
3-3-1-2 Permeation through 1, 3, 5 sheet of silk screen/PLGA hybrid membranes using 18 ml cell solution containing 50×104 cells/ml 62
3-4 The ability of adipose tissue cells purified by the membrane filtration method to differentiate into osteoblasts 69
3-4-1 Alkaline phosphatase activity and gene expression 69
3-4-1-1 One sheet of silk screen/PLGA hybrid membranes using different cell density and volume of cell solution 69
3-4-1-2 1, 3, 5 sheets of silk screen/PLGA hybrid membranes using 18 ml of cell solution containing 50×104 cells/ml 74
3-4-2 Alizarin red and von Kossa staining 79
3-4-2-1 One sheet of silk screen/PLGA hybrid membranes using different cell density and volume of cell solution 79
3-4-2-2 hADSC purification through 1, 3, 5 sheet of silk screen/PLGA hybrid membranes using 18 ml cell solution containing 100×104 cells/ml 85
Chapter 4 Conclusion 91
Reference 93
參考文獻 Reference
1. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, vol. 33, pp. 8228-39, 2012.
2. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, vol. 418(6893), pp. 41-9, 2002.
3. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, vol. 112(8), pp. 4507-40, 2012.
4. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, vol. 448(7151). pp. 313-7, 2007.
5. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, vol. 126(4), pp. 663-76, 2006.
6. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, vol. 318(5858), pp. 1917-20, 2007.
7. Lin, S.L., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like stat. RNA, vol. 14(10), pp. 2115-24, 2008.
8. Zhou, H., et al., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, vol. 4(5), pp. 381-4, 2009.
9. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, vol. 111(5), pp. 3021-35, 2011.
10. Favre, G., et al., Differences between graft product and donor side effects following bone marrow or stem cell donatio. Bone Marrow Transplant, vol. 32(9), pp. 873-80, 2003.
11. Bosi, A. and B. Bartolozzi, Safety of bone marrow stem cell donation: a review. Transplant Proc, vol. 42(6), pp. 2192-4, 2010.
12. Gratwohl, A., et al., Predictability of hematopoietic stem cell transplantation rates. Haematologica, vol. 92(12), pp. 1679-86, 2007.
13. Hamidieh, A.A., et al., Autologous stem cell transplantation as treatment modality in a patient with relapsed pancreatoblastoma. Pediatr Blood Cancer, vol. 55(3), pp. 573-6, 2010.
14. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, vol. 85A(4), pp. 853-861, 2008.
15. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. J Cell Biochem, vol. 98(5), pp. 1076-84, 2006.
16. Scadden, D.T., The stem-cell niche as an entity of action. Nature, vol. 441(7097), pp. 1075-9, 2006.
17. Horwitz, E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A, vol. 99(13), pp. 8932-7, 2002.
18. Arinzeh, T.L., et al., Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am, vol. 85-A(10), pp. 1927-35, 2003.
19. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, vol. 284(5411), pp. 143-7, 1999.
20. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, vol. 24(5), pp. 1294-301, 2006.
21. Crisan, M., et al., A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, vol. 3(3), pp. 301-13, 2008.
22. Brighton, C.T. and R.M. Hunt, Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am, vol. 73(6), pp. 832-47, 1991.
23. Netter, F.H., Musculoskeletal system : anatomy, physiology, and metabolic disorders. U.S.A : Indoo. 1987.
24. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, vol. 7(2), pp. 211-28, 2001.
25. Mizuno, H., M. Tobita, and A.C. Uysal, Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells, vol. 30(5), pp. 804-10, 2012.
26. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, vol. 13(12), pp. 4279-95, 2002.
27. van Dijk, A., et al., Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res, vol. 334(3), pp. 457-67, 2008.
28. Schaffler, A. and C. Buchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, vol. 25(4), pp. 818-27, 2007.
29. Oedayrajsingh-Varma, M.J., et al., Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, vol. 8(2), pp. 166-77, 2006.
30. Mitchell, J.B., et al., Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, vol. 24(2), pp. 376-85, 2006.
31. Zaragosi, L.E., G. Ailhaud, and C. Dani, Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells, vol. 24(11), pp. 2412-9, 2006.
32. Rubio, D., et al., Spontaneous human adult stem cell transformation. Cancer Res, vol. 65(8), pp. 3035-9, 2005.
33. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, vol. 6(4), pp. 483-95, 2004.
34. Rider, D.A., et al., Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells, vol. 26(6), pp. 1598-608, 2008.
35. Mochizuki, T., et al., Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum, vol. 54(3), pp. 843-53, 2006.
36. Stein, G.S., et al., Transcriptional control of osteoblast growth and differentiation. Physiol Rev, vol. 76(2), pp. 593-629, 1996.
37. Martin, I., et al., Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res, vol. 55(2), pp. 229-35, 2001.
38. Noth, U., et al., Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A, vol. 83(3), pp. 626-35, 2007.
39. Planat-Benard, V., et al., Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res, vol. 94(2), pp. 223-9, 2004.
40. Miyahara, Y., et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, vol. 12(4), pp. 459-65, 2006.
41. Strem, B.M., et al., Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, vol. 7(3), pp. 282-91, 2005.
42. Rodriguez, A.M., et al., Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, vol. 201(9), pp. 1397-405, 2005.
43. Sefcik, L.S., et al., Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med, vol. 2(4), pp. 210-20, 2008.
44. PP, B.M., et al., Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med, vol. 16(12), pp. 1077-85, 2005.
45. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, vol. 126(4), pp. 677-89, 2006.
46. Ward, D.F., Jr., et al., Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev, vol. 16(3), pp. 467-80, 2007.
47. Zscharnack, M., et al., Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs, vol. 190(2), pp. 81-93, 2009.
48. Zimmerlin, L., et al., Stromal vascular progenitors in adult human adipose tissue. Cytometry A, vol. 77(1), pp. 22-30, 2010.
49. Yoshimura, K., et al., Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol, vol. 208(1), pp. 64-76, 2006.
50. Civin, C.I., et al., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol, vol. 133(1), pp. 157-65, 1984.
51. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, vol. 275(5302), pp. 964-7, 1997.
52. Pusztaszeri, M.P., W. Seelentag, and F.T. Bosman, Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem, vol. 54(4), pp. 385-95, 2006.
53. Lin, G., et al., Defining stem and progenitor cells within adipose tissue. Stem Cells Dev, vol. 17(6), pp. 1053-63, 2008.
54. Traktuev, D.O., et al., A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res, vol. 102(1), pp. 77-85, 2008.
55. Zannettino, A.C., et al., Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol, vol. 214(2), pp. 413-21, 2008.
56. Sengenes, C., et al., Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol, vol. 205(1), pp. 114-22, 2005.
57. Higuchi, A., et al., Cell separation between mesenchymal progenitor cells through porous polymeric membranes. J Biomed Mater Res B Appl Biomater, vol. 74(1), pp. 511-9, 2005.
58. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. J Biomed Mater Res A, vol. 78(3), pp. 491-9, 2006.
59. Rodbell, M., Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem, vol. 241(1), pp. 130-9, 1966.
60. Rodbell, M., The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem, vol. 241(17), pp. 3909-17, 1966.
61. Rodbell, M. and A.B. Jones, Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem, vol. 241(1), pp. 140-2, 1966.
62. Kurita, M., et al., Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg, vol. 121(3), pp. 1033-41; discussion 1042-3, 2008.
63. Higuchi, A., et al., Peripheral blood cell separation through surface-modified polyurethane membranes. J Biomed Mater Res A, vol. 68(1), pp. 34-42, 2004.
64. Higuchi, A., et al., Separation of Hematopoietic Stem and Progenitor Cells from Human Peripheral Blood Through Polyurethane Foaming Membranes Modified with Several Amino Acids. Journal of Applied Polymer Science, vol. 114(2), pp. 671-679, 2009.
65. Ormerod, M.G., ed. Flow cytometry : A practical approach, 3rd Edition. Oxford University Press, 2000.
66. Watson, J., ed. Introduction to flow cytometry, First paperback edition. Cambridge University Press, 2004.
67. Mullis, K., et al., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, vol. 51 Pt 1, pp. 263-73, 1986.
68. Mullis, K.B., The Polymerase Chain-Reaction (Nobel Lecture). Angewandte Chemie-International Edition in English, vol. 33(12), pp. 1209-1213, 1994.
69. Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction. Methods Mol Biol, vol. 226, pp. 3-6, 2003.
70. Pavlov, A.R., et al., Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol, vol. 22(5), pp. 253-60, 2004.
71. Rychlik, W., W.J. Spencer, and R.E. Rhoads, Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res, vol. 18(21), pp. 6409-12, 1990.
72. Thweatt, R., S. Goldstein, and R.J. Shmookler Reis, A universal primer mixture for sequence determination at the 3’ ends of cDNAs. Anal Biochem, vol. 190(2). pp. 314-6, 1990.
73. Krawetz, S.A., R.T. Pon, and G.H. Dixon, Increased efficiency of the Taq polymerase catalyzed polymerase chain reaction. Nucleic Acids Res, vol. 17(2), pp. 819, 1989.
74. Sarkar, G., S. Kapelner, and S.S. Sommer, Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res, vol. 18(24), pp. 7465, 1990.
75. Wu, D.Y., et al., The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol, vol. 10(3), pp. 233-8, 1991.
76. Yap, E.P. and J.O. McGee, Short PCR product yields improved by lower denaturation temperatures. Nucleic Acids Res, vol. 19(7), pp. 1713, 1991.
77. Olsen, B.R., A.M. Reginato, and W. Wang, Bone development. Annu Rev Cell Dev Biol, vol. 16, pp. 191-220, 2000.
78. Harada, S. and G.A. Rodan, Control of osteoblast function and regulation of bone mass. Nature, vol. 423(6937), pp. 349-55, 2003.
79. Lian, J.B., et al., Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord, vol. 7(1-2), pp. 1-16, 2006.
80. Romero-Prado, M., et al., Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. J Cell Biochem, vol. 98(6), pp. 1457-70, 2006.
81. Lengner, C.J., et al., Activation of the bone-related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mech Dev, vol. 114(1-2), pp. 167-70, 2002.
82. Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, vol. 89(5), pp. 747-54, 1997.
83. Lengner, C.J., et al., Nkx3.2-mediated repression of Runx2 promotes chondrogenic differentiation. J Biol Chem, vol. 280(16), pp. 15872-9, 2005.
84. Provot, S., et al., Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development, vol. 133(4), pp. 651-62, 2006.
85. Murtaugh, L.C., et al., The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell, vol. 1(3), pp. 411-22, 2001.
86. Eames, B.F., P.T. Sharpe, and J.A. Helms, Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Dev Biol, vol. 274(1), pp. 188-200, 2004.
87. Guo, J., et al., PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol, vol. 292(1), pp. 116-28, 2006.
88. Iwamoto, M., et al., Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthritis Cartilage, vol. 11(1), pp. 6-15, 2003.
89. Li, T.F., et al., Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res, vol. 299(1), pp. 128-36, 2004.
90. Pratap, J., et al., The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol, vol. 25(19), pp. 8581-91, 2005.
91. Zelzer, E., et al., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev, vol. 106(1-2), pp. 97-106, 2001.
92. ten Dijke, P., et al., Signal transduction of bone morphogenetic proteins in osteoblast differentiation. Journal of Bone and Joint Surgery-American, vol. 85A, pp. 34-38, 2003.
93. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth Factors, vol. 22(4), pp. 233-241, 2004.
94. Hassan, M.Q., et al., Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol, vol. 24(20), pp. 9248-61, 2004.
95. Ferrari, D., et al., Dlx-5 in limb initiation in the chick embryo. Dev Dyn, vol. 216(1), pp. 10-5, 1999.
96. Bidder, M., T. Latifi, and D.A. Towler, Reciprocal temporospatial patterns of Msx2 and Osteocalcin gene expression during murine odontogenesis. J Bone Miner Res, vol. 13(4), pp. 609-19, 1998.
97. Depew, M.J., et al., Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat, vol. 207(5), pp. 501-61, 2005.
98. Holleville, N., et al., BMP signals regulate Dlx5 during early avian skull development. Dev Biol, vol. 257(1), pp. 177-89, 2003.
99. Dodig, M., et al., Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation. Dev Biol, vol. 209(2), pp. 298-307, 1999.
100. Lee, M.H., et al., BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun, vol. 309(3), pp. 689-94, 2003.
101. Lee, M.H., et al., BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem, vol. 278(36), pp. 34387-94, 2003.
102. Ichida, F., et al., Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem, vol. 279(32), pp. 34015-22, 2004.
103. Yoshizawa, T., et al., Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol Cell Biol, vol. 24(8), pp. 3460-72, 2004.
104. Cheng, S.L., et al., MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem, vol. 278(46), pp. 45969-77, 2003.
105. Balint, E., et al., Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem, vol. 89(2), pp. 401-26, 2003.
106. Lee, M.H., et al., Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem, vol. 280(42), pp. 35579-87, 2005.
107. Shirakabe, K., et al., Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells, vol. 6(10), pp. 851-6, 2001.
108. Hassan, M.Q., et al., Hoxa10: A BMP2-responsive gene activates Runx2 and regulates osteogenesis. Journal of Bone and Mineral Research, vol. 20(9), pp. S5-S5, 2005.
109. Nakashima, K., et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, vol. 108(1), pp. 17-29, 2002.
110. Kim, Y.J., et al., The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene, vol. 366(1), pp. 145-51, 2006.
111. Pratap, J., et al., Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res, vol. 63(17), pp. 5357-62, 2003.
112. Xiao, G., et al., Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem, vol. 280(35), pp. 30689-96, 2005.
113. Gutierrez, S., et al., CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J Biol Chem, vol. 277(2), pp. 1316-23, 2002.
114. McCarthy, T.L., et al., Runt domain factor (Runx)-dependent effects on CCAAT/ enhancer-binding protein delta expression and activity in osteoblasts. J Biol Chem, vol. 275(28), pp. 21746-53, 2000.
115. Selvamurugan, N., et al., Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J Biol Chem, vol. 273(17), pp. 10647-57, 1998.
116. Yang, X., et al., ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell, vol. 117(3), pp. 387-98, 2004.
117. Otto, F., et al., Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, vol. 89(5), pp. 765-71, 1997.
118. Komori, T., Regulation of osteoblast differentiation by transcription factors. J Cell Biochem, vol. 99(5), pp. 1233-9, 2006.
119. Puchacz, E., et al., Chromosomal localization of the human osteocalcin gene. Endocrinology, vol. 124(5), pp. 2648-50, 1989.
120. Cancela, L., et al., Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene. J Biol Chem, vol. 265(25), pp. 15040-8, 1990.
121. Lee, N.K., et al., Endocrine regulation of energy metabolism by the skeleton. Cell, vol. 130(3), pp. 456-69, 2007.
122. Nomura, S., et al., Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol, vol. 106(2), pp. 441-50, 1988.
123. Kuhn, K., et al., The structure of type IV collagen. Ann N Y Acad Sci, vol. 460, pp. 14-24, 1985.
124. Ashizawa, N., et al., Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. J Clin Invest, vol. 98(10), pp. 2218-27, 1996.
125. Murry, C.E., et al., Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol, vol. 145(6), pp. 1450-62, 1994.
126. Ikeda, T., et al., Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest, vol. 92(6), pp. 2814-20, 1993.
127. Uaesoontrachoon, K., et al., Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro. Int J Biochem Cell Biol, vol. 40(10), pp. 2303-14, 2008.
128. Merry, K., et al., Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci, vol. 104 ( Pt 4), pp. 1013-20, 1993.
129. Choi, S.T., et al., Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford), vol. 47(12), pp. 1775-9, 2008.
130. Reinholt, F.P., et al., Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A, vol. 87(12), pp. 4473-5, 1990.
131. Ho, M.H., et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, vol. 25(1), pp. 129-138, 2004.
132. Dai, W.D., et al., The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials, vol. 31(8), pp. 2141-2152, 2010.
133. Higuchi, A., et al., Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. Journal of Membrane Science, vol. 366(1-2), pp. 286-294, 2011.
指導教授 樋口亞绀(Akon Higuchi) 審核日期 2013-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明