參考文獻 |
1.Biasco, L., C. Baricordi, and A. Aiuti, Retroviral Integrations in Gene Therapy Trials. Molecular Therapy, 2012. 20(4): p. 709-716.
2.Lam, J.K.W., et al., Phosphorylcholine-polycation diblock copolymers as synthetic vectors for gene delivery. Journal of Controlled Release, 2004. 100(2): p. 293-312.
3.Li, J., et al., Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of Controlled Release, 2010. 142(3): p. 416-421.
4.Oh, S., et al., Efficacy of nonviral gene transfer in the canine brain. Journal of Neurosurgery, 2007. 107(1): p. 136-144.
5.Zhou, J.Y., et al., Intracellular kinetics of non-viral gene delivery using polyethylenimine carriers. Pharmaceutical Research, 2007. 24(6): p. 1079-1087.
6.Petersen, H., et al., Polyethylenimine-graft-poly(ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chemistry, 2002. 13(4): p. 845-854.
7.Chollet, P., et al., Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. Journal of Gene Medicine, 2002. 4(1): p. 84-91.
8.Dekie, L., et al., Poly-L-glutamic acid derivatives as vectors for gene therapy. Journal of Controlled Release, 2000. 65(1-2): p. 187-202.
9.Ferruti P, K.S., Ranucci E, Gianasi E, R D., A novel chemical modification of poly-l-lysine reducing toxicity while preserving cationic properties. Proc. Int. Symp. Controlled Release Bioact. Mater., 1997. 24: p. 45-46.
10.Fischer, D., et al., Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes. Bioconjugate Chemistry, 2002. 13(5): p. 1124-1133.
11.Tang, M.X. and F.C. Szoka, The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Therapy, 1997. 4(8): p. 823-832.
12.Choosakoonkriang, S., et al., Biophysical characterization of PEI/DNA complexes. Journal of Pharmaceutical Sciences, 2003. 92(8): p. 1710-1722.
13.Bhise, N.S., et al., The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2-D cultures and 3-D organotypic cultures. Biomaterials, 2010. 31(31): p. 8088-8096.
14.Akinc, A., et al., Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine, 2005. 7(5): p. 657-663.
15.Vroman, B., et al., Copolymers of epsilon-caprolactone and quaternized epsilon-caprolactone as gene carriers. J Control Release, 2007. 118(1): p. 136-44.
16.Thomas, M. and A.M. Klibanov, Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A, 2002. 99(23): p. 14640-5.
17.Steven, A., et al.,, Gene transfer into humans-immunotherapy of patients with advenced melanoma using TIL modified by retroviral transduction. The New England Journal of Medicine, 1990. 323: p. 570-578.
18.Zeilfelder, U., et al., The potential of retroviral vectors to cotransfer human endogenous retroviruses (HERVs) from human packaging cell lines. Gene, 2007. 390(1-2): p. 175-179.
19.Deng, X.M., et al., Gene therapy with adenoviral plasmids or naked DNA of vascular endothelial growth factor and platelet-derived growth factor accelerates healing of duodenal ulcer in rats. Journal of Pharmacology and Experimental Therapeutics, 2004. 311(3): p. 982-988.
20.Daya, S. and K.I. Berns, Gene Therapy Using Adeno-Associated Virus Vectors. Clinical Microbiology Reviews, 2008. 21(4): p. 583-593.
21.Walther, W. and U. Stein, Viral vectors for gene transfer - A review of their use in the treatment of human diseases. Drugs, 2000. 60(2): p. 249-271.
22.Enders, J.F., et al., Adenoviruses: group name proposed for new respiratory-tract viruses. Science, 1956. 124(3212): p. 119-20.
23.Dai, Y.F., et al., Cellular and Humoral Immune-Responses to Adenoviral Vectors Containing Factor-Ix Gene - Tolerization of Factor-Ix and Vector Antigens Allows for Long-Term Expression. Proc Natl Acad Sci U S A, 1995. 92(5): p. 1401-1405.
24.Mittereder, N., et al., Evaluation of the Efficacy and Safety of in-Vitro, Adenovirus-Mediated Transfer of the Human Cystic-Fibrosis Transmembrane Conductance Regulator Cdna. Hum Gene Ther, 1994. 5(6): p. 717-729.
25.Yang, Y.P., et al., Inactivation of E2a in Recombinant Adenoviruses Improves the Prospect for Gene-Therapy in Cystic-Fibrosis. Nature Genetics, 1994. 7(3): p. 362-369.
26.Buning, H., et al., Recent developments in adeno-associated virus vector technology. Journal of Gene Medicine, 2008. 10(7): p. 717-733.
27.Rolland, A.P., From genes to gene medicines: Recent advances in nonviral gene delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 1998. 15(2): p. 143-198.
28.Luo, D. and W.M. Saltzman, Synthetic DNA delivery systems. Nature Biotechnology, 2000. 18(1): p. 33-37.
29.Coster, H.G., A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of "punch-through". Biophys J, 1965. 5(5): p. 669-86.
30.Sale, A.J. and W.A. Hamilton, Effects of high electric fields on micro-organisms. 3. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta, 1968. 163(1): p. 37-43.
31.Sale, A.J.H. and W.A. Hamilton, Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochimica et Biophysica Acta (BBA) - General Subjects, 1967. 148(3): p. 781-788.
32.E.Neumann, M.S.-R., Y.Wang, and and P.H.Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO Journal, 1982. 1: p. 841-845.
33.Fromm, M., L.P. Taylor, and V. Walbot, Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A, 1985. 82(17): p. 5824-8.
34.Potter, H., L. Weir, and P. Leder, Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A, 1984. 81(22): p. 7161-5.
35.Gao, X., K.S. Kim, and D.X. Liu, Nonviral gene delivery: What we know and what is next. Aaps Journal, 2007. 9(1): p. E92-E104.
36.Escoffre, J.M., et al., What is (Still not) Known of the Mechanism by Which Electroporation Mediates Gene Transfer and Expression in Cells and Tissues. Molecular Biotechnology, 2009. 41(3): p. 286-295.
37.Capecchi, M.R., High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell, 1980. 22(2 Pt 2): p. 479-88.
38.Zhang, Y. and L.C. Yu, Microinjection as a tool of mechanical delivery. Current Opinion in Biotechnology, 2008. 19(5): p. 506-510.
39.Klein, R.M., et al., High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Biotechnology, 1992. 24: p. 384-6.
40.Williams, R.S., et al., Introduction of Foreign Genes into Tissues of Living Mice by DNA-Coated Microprojectiles. Proc Natl Acad Sci U S A, 1991. 88(7): p. 2726-2730.
41.Yang, N.S., et al., In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A, 1990. 87(24): p. 9568-72.
42.Mahvi, D.M., et al., Phase I/IB study of immunization with autologous tumor cells transfected with the GM-CSF gene by particle-mediated transfer in patients with melanoma or sarcoma. Hum Gene Ther, 1997. 8(7): p. 875-888.
43.Sun, Y., et al., Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Therapy, 1998. 5(4): p. 481-490.
44.Trimble, C., et al., Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine, 2003. 21(25-26): p. 4036-4042.
45.Tahtinen, M., et al., DNA vaccination in mice using HIV-1 nef, rev and tat genes in self-replicating pBN-vector. Vaccine, 2001. 19(15-16): p. 2039-2047.
46.Yoshida, A., et al., Protective CTL response is induced in the absence of CD4(+) T cells and IFN-gamma by gene gun DNA vaccination with a minigene encoding a CTL epitope of Listeria monocytogenes. Vaccine, 2001. 19(30): p. 4297-4306.
47.Jordan, M., A. Schallhorn, and F.M. Wurm, Transfecting mammalian cells: Optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Research, 1996. 24(4): p. 596-601.
48.Jordan, M. and F. Wurm, Transfection of adherent and suspended cells by calcium phosphate. Methods, 2004. 33(2): p. 136-143.
49.Lee, D., K. Upadhye, and P.N. Kumta, Nano-sized calcium phosphate (CaP) carriers for non-viral gene delivery. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2012. 177(3): p. 289-302.
50.Varga, C.M., T.J. Wickham, and D.A. Lauffenburger, Receptor-mediated targeting of gene delivery vectors: Insights from molecular mechanisms for improved vehicle design. Biotechnology and Bioengineering, 2000. 70(6): p. 593-605.
51.Rangavittal, N., et al., Structural study and stability of hydroxyapatite and beta-tricalcium phosphate: Two important bioceramics. Journal of Biomedical Materials Research, 2000. 51(4): p. 660-668.
52.Chen, Q.Z., et al., Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials, 2004. 25(18): p. 4243-4254.
53.Poste, G. and D. Papahadjopoulos, Fusion of mammalian cells by lipid vesicles. Methods Cell Biol, 1976. 14: p. 23-32.
54.Felgner, P.L.G., T. R.; Holm, M.; Roman, R.; Chan, H. W.;Wenz, M.; Northrop, J. P.; Ringold, G. M.; Danielsen, M., Lipofection:a highly efficient,lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 1987. 84: p. 7413-7417.
55.Gebeyehu, G.J., J. A.; Ciccarone, V. C.; Hawley-Nelson, P.;Chytil, A., Cationic lipids. U.S. Patent, 1994. 5: p. 334-761.
56.Stamatatos, L., et al., Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry, 1988. 27(11): p. 3917-25.
57.Behr, J.P., et al., Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci U S A, 1989. 86(18): p. 6982-6.
58.Wang, C.Y. and L. Huang, Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry, 1989. 28(24): p. 9508-14.
59.Legendre, J.Y. and F.C. Szoka, Delivery of Plasmid DNA into Mammalian-Cell Lines Using Ph-Sensitive Liposomes - Comparison with Cationic Liposomes. Pharmaceutical Research, 1992. 9(10): p. 1235-1242.
60.Zhou, X.H. and L. Huang, DNA Transfection Mediated by Cationic Liposomes Containing Lipopolylysine - Characterization and Mechanism of Action. Biochimica Et Biophysica Acta-Biomembranes, 1994. 1189(2): p. 195-203.
61.Mintzer, M.A. and E.E. Simanek, Nonviral Vectors for Gene Delivery. Chemical Reviews, 2009. 109(2): p. 259-302.
62.Jones, G.D., et al., THE POLYMERIZATION OF ETHYLENIMINE. The Journal of Organic Chemistry, 1944. 09(2): p. 125-147.
63.Brissault, B., et al., Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjugate Chemistry, 2003. 14(3): p. 581-587.
64.Ferrari, S., et al., ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Therapy, 1997. 4(10): p. 1100-1106.
65.Baker, A., et al., Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Therapy, 1997. 4(8): p. 773-782.
66.Fischer, D., et al., A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceutical Research, 1999. 16(8): p. 1273-1279.
67.Godbey, W.T., K.K. Wu, and A.G. Mikos, Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. Journal of Biomedical Materials Research, 1999. 45(3): p. 268-75.
68.Fischer, D., et al., In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003. 24(7): p. 1121-1131.
69.Forrest, M.L., J.T. Koerber, and D.W. Pack, A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjugate Chemistry, 2003. 14(5): p. 934-940.
70.Peng, Q., Z. Zhong, and R. Zhuo, Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors. Bioconjug Chem, 2008. 19(2): p. 499-506.
71.Suh, J., H.J. Paik, and B.K. Hwang, Ionization of Poly(Ethylenimine) and Poly(Allylamine) at Various Phs. Bioorganic Chemistry, 1994. 22(3): p. 318-327.
72.Boussif, O., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A, 1995. 92(16): p. 7297-301.
73.Behr, J.P., The proton sponge: A trick to enter cells the viruses did not exploit. Chimia, 1997. 51(1-2): p. 34-36.
74.Godbey, W.T., K.K. Wu, and A.G. Mikos, Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A, 1999. 96(9): p. 5177-81.
75.Lee, J.H., et al., Quaternized polyamidoamine dendrimers as novel gene delivery system: Relationship between degree of quaternization and their influences. Bulletin of the Korean Chemical Society, 2003. 24(11): p. 1637-1640.
76.Chiag, Y.C., et al., Biofouling Resistance of Ultrafiltration Membranes Controlled by Surface Self-Assembled Coating with PEGylated Copolymers. Langmuir, 2012. 28(2): p. 1399-1407.
77.Chang, Y., et al., A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces. Journal of Biomedical Materials Research Part A, 2010. 93A(1): p. 400-408.
78.Papahadjopoulos, D., et al., Sterically Stabilized Liposomes - Improvements in Pharmacokinetics and Antitumor Therapeutic Efficacy. Proc Natl Acad Sci U S A, 1991. 88(24): p. 11460-11464.
79.Ogris, M., et al., PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Therapy, 1999. 6(4): p. 595-605.
80.Kichler, A., Gene transfer with modified polyethylenimines. Journal of Gene Medicine, 2004. 6: p. S3-S10.
81.Sagara, K. and S.W. Kim, A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. Journal of Controlled Release, 2002. 79(1-3): p. 271-281.
82.Blessing, T., et al., Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjugate Chemistry, 2001. 12(4): p. 529-537.
83.Kou, J.P., et al., Michael Addition of Amines to Activated Alkenes Promoted by Zn/NH4Cl System. Chemical Research in Chinese Universities, 2009. 25(4): p. 461-464.
84.Al-Dosari, M.S. and X. Gao, Nonviral Gene Delivery: Principle, Limitations, and Recent Progress. Aaps Journal, 2009. 11(4): p. 671-681.
85.Lim, Y.B., et al., The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity. Biomaterials, 2010. 31(8): p. 2025-2033.
86.Geisse, S., M. Jordan, and F.M. Wurm, Large-scale transient expression of therapeutic proteins in mammalian cells. Methods Mol Biol, 2005. 308: p. 87-98.
87.Singer, V.L., et al., Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Analytical Biochemistry, 1997. 249(2): p. 228-238.
88.van de Wetering, P., et al., 2-(dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. Journal of Controlled Release, 1998. 53(1-3): p. 145-153.
89.Scaiewicz, V., et al., Use of H19 Gene Regulatory Sequences in DNA-Based Therapy for Pancreatic Cancer. J Oncol, 2010. 2010: p. 178174. |