博碩士論文 100324039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.223.209.129
姓名 林賢昆(Hsien-Kun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 添加劑對鈀/氧化鈰觸媒於甲苯完全氧化反應之影響
(Effects of additives on Pd catalysts for catalytic oxidation of toluene)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年全球工業蓬勃發展,但隨之而來的環境汙染問題也日益嚴重,揮發性有機廢氣因其易擴散與高毒性的特性在減排問題上備受關注。現以觸媒燃燒法為去除有機廢氣最佳處理方式,其中貴金屬觸媒對揮發性有機廢氣的氧化有良好的效率,本研究的目的在於發展出低溫反應活性最佳的且符合經濟效益之有機廢氣物去除之金屬觸媒。
本研究探討將奈米級的鈀承載於經過一系列以添加金屬物改質的氧化鈰擔體上,並比較不同製備法、以及改質擔體後甲苯氧化反應的優劣。以初濕含浸法及共沉澱法製備Pd/CeO2、Pd/CuO-CeO2、Pd/MnOx-CeO2系列觸媒,添加不同金屬或金屬氧化物以增加其活性,探討觸媒對於甲苯的完全氧化反應之影響。
觸媒鑑定方面,主要是以X光繞射儀(XRD),氮氣吸附-脫附儀(N2-sorption),穿透式電子顯微鏡(TEM),高解析度穿透式電子顯微鏡(HRTEM),X光電子能譜儀(XPS)與程溫還原系統(TPR),進行鑑定與分析。並使用甲苯作為本研究觸媒焚化之指標物。反應物甲苯之進料濃度為8.564g/m3(2085ppm),空間流速為10,000h-1。XRD圖譜可以得到結晶良好的擔體波峰卻偵測不到鈀的波峰,代表鈀的顆粒小於儀器的偵測限制(4奈米),配合TEM及HRTEM圖顯示鈀的顆粒約為2到4奈米,且均勻分布在擔體上,BET測量結果顯示在同樣的條件下因為添加金屬物改質使得的觸媒的表面積有明顯差異,也間接提升鈀金屬在觸媒間能分散的位置。由XPS分析中可以發現不同金屬物引入能提升鈀元素態的比例,同時增進反應活性。反應測試以共沉澱方法製備的擔體在反應活性表現上比初濕含浸法來得好,證明以共沉澱方式添加金屬引入物使擔體間有更佳的交互作用。
本研究以連續式固定床反應器來量測鈀觸媒於甲苯氧化反應之活性。所有觸媒中以Pd/MnOx-CeO2系列觸媒有著較高的甲苯氧化活性,以引入Al及Zr之Pd/MnOx-CeO2觸媒活性最佳,分別於96℃及134℃達到50%甲苯轉化、且於190℃皆將甲苯完全氧化。證明在同樣的條件下,適度的引入金屬添加物能使得觸媒間產生協同作用,使得觸媒有更佳的表現。
摘要(英) VOCs exhausts have high volatile, high diffusivity and harmful for human body, therefore, how to reducing the amount of VOCs contamination is an important issue for environment protection. Catalytic oxidation is an effective way for treating the emissions of VOCs. Supported noble metal catalysts have been known as highly active catalysts for oxidation of hydrocarbons and have been preferentially used in commercial practices. The purpose of this study is to develop a low temperature reactivity and cost-effective metal catalyst for VOCs oxidation.
In this study, a series of Pd/CeO2、Pd/CuO-CeO2、Pd/MnOx-CeO2 catalysts with different metal additives were prepared by incipient-wetness impregnation method and co-precipitation method. These catalysts which compare different preparation method and add different metal or metal oxide to increase its activity were tested for total oxidation of toluene. Finally, we compare the properties and performance of these Pd based catalysts.
The samples were characterized by powder X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy XPS and H2-TPR techniques. The catalysts were tested for total oxidation of toluene which the feed concentration was 8.564g/m3 (2085ppm) with GHSV=10,000h-1.
The XRD patterns showed the good crystalline but no palladium peaks were observed, which represent that the particle size of palladium was too small to detect (smaller than 4nm). The TEM and HRTEM images indicate that the average particle size of palladium was about 2-4 nm and disperse well on the support. The BET surface area showed that the catalysts in the same condition will change the surface area obviously by adding the metal additives and let more active sites combine with palladium. XPS spectra showed that when different metal additives add to the catalysts which can get more metallic palladium species and increase the activity of the toluene oxidation. For the reaction test, the supports synthesized by co-precipitation method were much more active than incipient-wetness impregnation method, which proved that the supports had the better interaction by using co-precipitation method.
A fixed bed continuous flow reactor was used to measure the activities of the toluene oxidation with Pd based catalysts. In all series catalysts, Pd/MnOx-CeO2 series showed the best activity especially added the Al and Zr which yielded 50% conversion at 96℃ and 134℃, and both completely oxidation of toluene at 190℃. In conclusion, adding appropriate additives to the Pd based catalysts could get the synergetic effect between the compositions which made the catalysts have better higher activity on toluene destruction.
關鍵字(中) ★ 觸媒焚化
★ 鈀
★ 氧化鈰
★ 氧化錳
★ 金屬添加物
★ 甲苯
關鍵字(英) ★ VOCs combustion
★ Pd catalysts
★ CeO2
★ MnOx
★ metal additives
★ Toluene
論文目次 摘要 I
Abstract III
Table of Contents V
List of Tables VIII
List of Figures IX
Chapter 1. Introduction 1
Chapter 2. Literature review 3
2.1VOCs 3
2.1.1 Introduction VOCs 3
2.1.2 Introduction toluene 3
2.1.3 VOCs control technologies 6
2.2 Catalyst preparation method 9
2.2.1 Impregnation method 9
2.2.2 Co-precipitation method 9
2.2.3 Deposition-precipitation method 9
2.2.4 Colloidal method 10
2.2.5 CVD method 11
2.3 Palladium catalysts 11
2.3.1 Complete oxidation of VOCs 11
2.3.2 Other Palladium catalysts application 12
2.4 Fluorite structure oxide 13
2.4.1 CeO2 13
2.4.2 CeO2 mixed oxide 16
2.5 Toluene oxidation 17
2.5.1 Support effect 19
2.5.2 Reaction mechanism 20
Chapter 3. Experimental 22
3.1 Chemicals 22
3.2 Catalyst preparation 23
3.2.1 Preparation of supports 23
3.2.2 Preparation of palladium catalysts 25
3.3 Characterization 25
3.3.1 XRD 25
3.3.2 N2-sorption 26
3.3.3 TEM and HRTEM 26
3.3.4 XPS 27
3.3.5 H2-TPR 27
3.4 Toluene oxidation reaction 28
Chapter 4. Catalytic combustion of toluene on Pd/CeO2–MOx catalysts 30
4.1 Introduction 30
4.2 Result 31
4.2.1 XRD 31
4.2.2 N2-sorption 34
4.2.3 TEM and HRTEM 37
4.2.4 XPS 44
4.3 Catalytic activity on toluene oxidation reaction 54
4.4 Discussion 59
4.4.1 Influence of preparation method 59
4.4.2 Optimization of Pd loading and ratio of Ce / additives 60
4.4.3 Properties of Pd on different supports 61
4.5 Cost of catalysts 62
4.6 Conclusion 63
Chapter 5. Catalytic combustion of toluene on Pd/CeO2–MnOx–MOx catalysts 64
5.1 Introduction 64
5.2 Results 65
5.2.1 XRD 65
5.2.2 N2-sorption 68
5.2.3 TEM and HRTEM 70
5.2.4 XPS 82
5.2.5 H2-TPR 92
5.3 Catalytic activity on toluene oxidation reaction 93
5.4 Discussion 96
5.4.1 Influence of preparation method 96
5.4.2 Effect of support 97
5.4.3 Mechanism of toluene oxidation reaction 98
5.5 Cost of catalysts 100
5.6 Performance summarization of past catalysts 100
5.7 Conclusion 103
Chapter 6. Summary 104
References 106
參考文獻 Abbasi, Z., Haghighi, M., Fatehifar, E., Saedy, S., “Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs”, J. Harzard. Meter. 186 (2011) 1445-1454.
Azalim, S., Franco, M., Brahmi, R., Giraudon, J.-M., Lamonier, J.-F., “Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts”, J. Harzard. Meter. 188 (2011) 422-427.
Briggs, D., Seah, M.P., “Practical Surface Analysis” second ed., John Wiley, Chichester, 1993.
Chen, H. Y., Sayari, A., Adnot, A., Larachi, F., “Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation”, Appl. Catal. B: Environ. 32 (2001) 195-204.
Chen, M., Ma, Y., Li, G. F., Zheng, X. M., “Support effect, thermal stability, and structure feature of toluene combustion catalyst”, Catal. Comm. 9 (2008) 990-994.
Cubeiro, M.L., Fierro, J.L.G., “Partial oxidation of methanol over supported palladium catalysts”, Appl. Catal. A: Gen. 168 (1998) 307-322.
Delimaris, D., Ioannides, T., “VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method”, Appl. Catal. B: Environ. 84 (2008) 303-312.
Derwent, R.G., Jenkin, M. E., Saunders, S.M., Pilling, M.J., “Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism”, Atoms. Envirom. 32 (1988) 2429.
Doggali, P., Teraoka, Y., Mungse, P., Shah, I. K., Rayalu, S., Labhsetwar, N., “Combustion of volatile organic compounds over Cu-Mn based mixed oxide type catalysts supported on mesoporous Al2O3, TiO2 and ZrO2”, J. Mole. Catal. A: Chemical 358 (2012) 23-30.
Donley, E., Lewandowski, D., “Optimized design and operating parameters for minimizing emissions during voc thermal oxidation”, Met. Finish. 98 (2000) 446.
Ferreira, R.S.G., Oliveira, P.G.P. de, Noronha, F.B., “Characterization and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation”, Appl. Catal. B: Environ. 50 (2004) 243-249.
Giraudon, J.M., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukaı’s, A., Lamonier, J. F., Leclercq, G., “Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene”, Appl. Catal. B: Environ.75 (2007) 157-166.
Hosseini, M., Barakat, T., Cousin, R., Aboukais, A., Su, B.-L., Weireld, G. D.,”Catalytic performance of core-shell and alloy Pd-Au nanoparticles for total oxidation of VOC: The effect of metal desposition”, Appl. Catal. B: Environ. 111-112 (2012) 218-224.
Hu, C., “Catalytic combustion kinetics of acetone and toluene over Cu0.13Ce0.87Oy catalyst”, Chem. Eng. J. 168 (2011) 1185-1192.
Ihm, S.K., Du, Y., Kim, D. C., Jeong, K.E., “Low-temperature deactivation and oxidation state of Pd/γ-Al2O3 catalysts for total oxidation of n-hexane”, Catal.Today. 93-95 (2004) 149-154.
Imamura, S., Shono, M., Okamoto, N., Hamada, A., Ishida, S., “Effect of cerium on the mobility of oxygen on manganese oxides”, Appl. Catal. A: Gen. 142 (1996) 279-288.
Kim, H. S., Kim, T. W., Koh, H.L., Lee, S. H., Min, B. R., “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A:Gen. 280 (2005) 125-131.
Kim, S. C., Shim, W. G., “Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds” Appl. Catal. B: Environ. 92 (2009) 429-436.
Li, G., Wang, Q., Zhao, B., Zhou, R., “ The promotional effect of transition metals on the catalytic behavior of model Pd/Ce0.67Zr0.33O2 three-way catalyst”, Catal. Today. 158 (2010) 385-392.
Menon, U., Poelman, H., Bliznuk, V., Galvita, V. V., Poelman, D., Marin, G. B., “ Nature of the active sites for the total oxidation of toluene by CuO-CeO2/Al2O3”, J. Catal. 295 (2012) 91-103.
Morikawa, A., Suzuki, T., Kikuta, K., Suda, A., Shinjo, H., “A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier”, Appl. Catal. B: Environ. 78 (2008) 210-221.
Nanostructured Ce-Mn Oxides for Catalytic Wet Oxidation”, J. Phys. Chem. C 114 (2010) 8981-8991.
Okal, J., Zawadzki, M., “Combustion of propane over novel zinc aluminate-supported ruthenium catalysts”, Appl. Catal. B: Environ. 105 (2011) 182-190.
Omil, J. A. P., Delgado, J. J., Ouahbi, W., Hungría, A. B., Browning, N., Cauqui, M. A., Izquierdo, J. M. R., Calvino, J. J., “Electron Microscopy Investigations of
Pozan, G. S., “Effect of support on the catalytic activity of manganese oxide catalyst for toluene combustion”, J. Harzard. Meter. 221-222 (2012) 124-130.
Rooke, J. C., Barakat, T., Siffert, S., Su, B.-L., “Total catalytic oxidation of toluene using Pd impregnated on hierarchically porous Nb2O5 and Ta2O5 supports”, Catal. Today. 192 (2012) 183-188.
Saqer, S. M., Kondarides, D. I., Verykios, X. E., “Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3”, Appl. Catal. B: Environ. 103 (2011) 275-286.
Shim, W.G. Shim, Lee, Kim, S.C., “Analysis of catalytic oxidation of aromatic
hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties”, Appl. Catal. B: Environ. 84 (2008) 133-141.
Si, R., Raitano, J., Yi, N., Zhang, L., Chan, S.-W., Flytzani-Stephanopoulos, M., “Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts”, Catal. Today. 180 (2012) 68-80.
Silva, A.M.T. Marques, R.R.N., Quinta-Ferreira, R.M., “Catalysts based in Cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks”, Appl. Catal. B. 47 (2004) 269-279.
Tang, X.F., Li, Y. G., Huang, X. M., Xu, Y. D., Zhu, H. Q., Wang J. G., Shen, W. J., “MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Appl. Catal. B: Environ. 62 (2006) 265-273.
Tidahy, H. L., Siffert, S., Lamonier, J. -F., Zhilinskaya, E.A., Aboukas, A., Yuan, Z. -Y., Vantomme, A., Su, B. -L., Canet, X., De Weireld, G., Frere, M., N’Guyen, T.B., Giraudon, J. -M., Leclercq, G., “ New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation”, Appl. Catal. A: Gen. 310 (2006) 61-69.
Tidahy, H.L., Siffert, S., Wyrwalski, F., Lamonier, J. -F., Aboukaїs, A., “Catalytic activity of copper and palladium based catalysts for toluene total oxidation”, Catal. Today 119 (2007) 317-320.
Wu, H., Wang, L., Zhang, J., Shen, Z., Zhao, J., “Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst”, Catal. Comm. 12 (2011) 859-865.
Zhang, F., Chan, S.-W., Spanier, J.E., Apak, Ebru, Jin, Q., “Cerium oxide nanoparticles: Size-selective formation and structure analysis” Appl. Phys. Lett. 80 (2002) 127.
Zuo, S., Du, Y., Liu, F., Han, D., Qi, C., “Influence of ceria promoter on shell-powder-supported Pd catalyst for the complete oxidation of benzene”, Appl. Catal. A: Gen. 451 (2013) 65-70.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2013-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明