參考文獻 |
參考文獻
[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics. 38 (1965) 56-59.
[2] Ashish Sood, Gareth M. James, Gerard J. Tellis and Ji Zhu, “Predicting the Path of Technological Innovation: SAW vs. Moore, Bass, Gompertz, and Kryder,” Market. Sci. 31 (2012) 6964-6979.
[3] Z. Kang, C. H. A. Tsang, N. B. Wong, Z. Zhang, and S. T. Lee, “Silicon Quantum Dots: A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions,” J. Am. Chem. Soc. 129 (2007) 12090-12091.
[4] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119.
[5] M. M. A. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P. L. Roach, D. E. Davies, P. H. Howarth, M. R. R. de Planque, H. Morgan, Peter Ashburn, “Thin Film Polycrystalline Silicon Nanowire Biosensors, ” Nano. Lett. 12 (2012) 1868−1872.
[6] G. J. Zhang, M. J. Huang, J. J. Ang, E. T. Liu, K. V. Desai, “Self-Assembled Monolayer-Assisted Slicon Nanowire Biosensor for Detection of Protein–DNA Interactions in Nuclear Extracts from Breast Cancer Cell” Acs. Sym. Ser. 26 (2011) 3233–3239.
[7] N. N. Mishra, W. C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S. K. Rastogi, B. Filanoski, and G. K. Maki, “Ultra-Sensitive Detection of Bacterial Toxin with Silicon Nanowire Transistor,” Lab. Chip. 8 (2008) 868-871.
[8] S. Su, Y. He, M. Zhang, K. Yang, S. Song, X. Zhang, C. Fan, and S. T. Lee, “High-Sensitivity Pesticide Detection via Silicon Nanowires-Supported Acetylcholinesterase-Based Electrochemical Sensors,” Appl. Phys. Lett. 93 (2008) 023113-1-023113-3.
[9] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires,” Nano. Lett. 4 (2004) 245-247.
[10] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chem. Phys. Lett. 369 (2003) 220–224.
[11] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon Nanowires as pH Sensor,” Jpn. J. Appl. Phys. 44 (2005) 2626–2629.
[12] I. Park, Z. Li, A. P. Pisano and R. S Williams, “Top-Down Fabricated Silicon Nanowire Sensors for Real-Time Chemical Detection,” Acs. Sym. Ser. 21 (2010) 015501.
[13] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnology. 3 (2008) 31-35.
[14] K. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. Lee, G. Lee, Y. M. Kang, and M. H. Jo, “Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-Ion Battery,” Appl. Phys. Lett. 96 (2010) 053110-1~053110-3.
[15] N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Yi Cui, “Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries,” ACS. Nano. (2011) No.8 6487–6493.
[16] M. T. Björk,J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon Nanowire Tunneling Field-Effect Transistors,” Appl. Phys. Lett. 92 (2008) 193504.
[17] G Rosaz, B Salem, N Pauc, P Gentile, A Potie, A Solank, and T Baron “High-Performance Silicon Nanowire Field-Effect Transistor with Silicided Contacts,” Semicond. Sci. Technol. 26 (2011) 085020.
[18] B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo, and D. L. Kwong, “Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET,” IEEE. Electr. Device. Lett. 29 (2008) 791-794.
[19] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. 2 (2010) 11 3285–3288.
[20] H. C. Wu, T. Y. Tsai, F. H. Chu, N. H. Tai, H. N. Lin, H. T. Chiu, and C. Y. Lee, “Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods,” J. Phys. Chem. C 114 (2010) 130–133.
[21] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Inter. 2 (2010) No. 2 331–334.
[22] K. Peng, X. Wang, and S. T. Lee, “ Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103.
[23] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano. Lett. 10 (2010) 1082-1087.
[24] K. Peng, X. Wang, and S. T. Lee, “Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103-1~163103-3.
[25] X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, and S. T. Lee, “High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification,” Angew. Chem. Int. Ed. 50 (2011) 9861 –9865.
[26] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, “Silicon Nanowire Solar Cells,” Appl. Phys. Lett. 91 (2007) 233117.
[27] J. Niu, J. Sha, and D. Yang, “Silicon Nano-Wires Fabricated by a Novel Thermal Evaporation of Zinc Sulfide,” Physica E 24 (2004) 178-182.
[28] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation,” Chem. Phys. Lett. 337 (2001) 18-24.
[29] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B 105 (2001) 2507-2514.
[30] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[31] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[32] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Silicon Quantum-Wires Arrays Synthesized by Chemical Vapor Deposition and its Micro-Structural Properties,” Chem. Phys. Lett. 374 (2003) 542-547.
[33] K. J. Wang, K. X. Wang, H. Zhang, G. D. Li, and J. S. Chen, “Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route,” J. Phys. Chem. C 114 (2010) 2471-2475.
[34] H. Hamidinezhad, Y. Wahab, Z. Othaman, and A. K. Ismail, “Synthesis and Analysis of Silicon Nanowire Below Si–Au Eutectic Temperatures Using Very High Frequency Plasma Enhanced Chemical Vapor Deposition,” Appl. Surf. Sci. 257 (2011) 9188– 9192.
[35] Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee, and X. D. Han, “Morphology of Si Nanowires Synthesized by High-Temperature Laser Ablation,” J. Appl. Phys. 85 (1999) 7981.
[36] N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi, N. Uchida, and K. Murakami, “Impurity Doping in Silicon Nanowires Synthesized by Laser Ablation,” Appl. Phys. A 93 (2008) 589–592.
[37] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835.
[38] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metalinduced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[39] Z. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano. Lett. 8 (2008) 3046-3051.
[40] T. Wells, M. M. E. Gomati, and J. Wood, “Low Temperature Reactive Ion Etching of Silicon with SF6/O2 Plasmas,” J. Vac. Sci. Technol. B15 (1997) 397.
[41] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang, and G. R. Lin, “Aspect-Ratio-Dependent Ultra-Low Reflection and Luminescence of Dry-Etched Si Nanopillars on Si Substrate,” Nanotechnology. 20 (2009) 035303-1~035303-7.
[42] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[43] Zhu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanostructured Photon Management for High Performance Solar Cells,” Mat. Sci. Eng. R 70 (2010) 330-340.
[44] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[45] S. L. Cheng, C.H. Lo, C.F. Chuang, and S.W. Lee, “Site-Controlled Fabrication of Dimension-Tunable Si Nanowire Arrays on Patterned (001) Si Substrates,” Thin. Solid. Films 520 (2012) 3309–3313.
[46] B. E. Deal, and A. S. Grove, “General Relationship for the Thermal Oxidation of silicon,” J. Appl. Phys. 36 (1965) 3770-3778.
[47] D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-I. Experiments,” IEEE. T. Electron. Dev ED-34 (1987) 1008-1017.
[48] E. H. Nicollian, and A. Reisman, “A New Model for the Thermal Oxidation Kinectics od Silicon,” J. Elec Mater, 17 (1988) 4.
[49] E. A. IRENE, and R. GHEZ, “ Thermal Oxidation of Silicon: New Experimental Results and Models,” Appl. Surf. Sci. 30 (1987) 1-16.
[50] T. Watanabe, and I. Ohdomari, “A Kinetic Equation for Thermal Oxidation of Silicon Replacing the Deal–Grove Equation,” J. Elec. Soc (2007) G270-G276.
[51] G. Stan, S. Krylyuk, A. V. Davydov, and R. F. Cook, “Compressive Stress Effect on the Radial Elastic Modulus of Oxidized Si Nanowires,” Nano. Lett. 10 (2010) 2031-2037.
[52] H. l. Liu, D. K. Biegelsen, N. M. Johnson, F. A. Ponce, and R. F. W. Pease, “Self-Limiting Oxidation of Si Nanowires,” J. Vac. Sci. Technol. B 11 (1993) 2532-2537.
[53] R. G. Mertens, K. B. Sundaram, “Mathematical Characterization of Oxidized Crystalline Silicon Nanowires Grown by Electroless Process,” Appl. Surf. Sci. 258 (2012) 4607–4613.
[54] C. C. Buttner, and M. Zacharias, “Retarded Oxidation of Si Nanowires” Appl. Phys. Lett. 89 (2006) 263106-1 – 263106-3.
[55] D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon Nanowires,” J.Vac. Sci. Technol. B24 (2006) 1333-1336.
[56] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89.
[57] D. L. Dheeraj, H. L. Zhou, A.F. Moses, T. B. Hoang, A. T. J. van Helvoort, B. O. Fimland, and H. Weman, “Heterostructured III-V Nanowires with Mixed Crystal Phases Grown by Au-Assisted Molecular Beam Epitaxy,” Paola Prete (ed), Nanowires, InTech, 2010.
[58] V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano. Lett. (2005) 931-935.
[59] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires,” Nanotechnology . 19 (2008) 185701.
[60] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate,” Chin. Phys. Lett. 19 (2002) 240-242.
[61] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Phys. E 9 (2001) 305-309.
[62] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 8 (1998) 58.
[63] T. Y. Tan1, S. T. Lee, and U. Gösele, “A Model for Growth Directional Features in Silicon Nanowires,” Appl. Phys. A 74 (2002) 423–432.
[64] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[65] X. H. Fan, L. Xu, C. P. Li, Y. F. Zheng, C. S. Lee, and S. T. Lee, “Effects of Ambient Pressure on Silicon Nanowire Growth,” Chem. Phys. Lett. 334 (2001) 229-232.
[66] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater. 15 (2003) 7-8.
[67] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[68] K. Tsujino and M. Matsumura, “Morphology of Nanoholes Formed in Silicon by Wet Etching in Solutions Containing HF and H2O2 at Different Concentrations Using Silver Nanoparticles as Catalysts,” Electrochimica. Acta 53 (2007) 28–34.
[69] M.L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem. C 112 (2008) 4444-4450.
[70] L. Lin, S. Guo, X. Sun, J. Feng, and Y. Wang, “Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays,” Nano. Res. Lett. 5 (2010) 1822-1828.
[71] B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, “Effect of Electroless Etching Parameters on the Growth and Reflection Properties of Silicon Nanowires,” Nanotechnology 22 (2011) 155606.
[72] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U Gösel, “ Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater. 23 (2011) 258-308.
[73] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[74] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210–6216.
[75] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[76] V. Canpean and S. Astilean, “Extending Nanosphere Lithography for the Fabrication of Periodic Arrays of Subwavelength Metallic Nanoholes,” Mater. Lett. 63 (2009) 2520–2522.
[77] K. H. Lee, Q. L. Chen, C. H. Yip, Q. F. Yan, and C. C. Wong, “Fabrication of Periodic Square Arrays by Angle-Resolved Nanosphere Lithography,” Microelectronic Eng. 87 (2010) 1941–1944.
[78] J. H. Leea, Y. W. Chung, M. H. Honb, and I. C. Leu, “Fabrication of Tunable Pore Size of Nickel Membranes by Electrodeposition on Colloidal Monolayer Template,” J. Alloy. Compd. 509 (2011) 6528–6531.
[79] G. M. Whitesides, J. P, Mathias, and C. T. Seto, “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures,” Science. 254 (1991) No. 5036 1312-1319.
[80] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih, “Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes,” Nature. 459 (2009) 414-418.
[81] C. Pacholski, A. Kornowski, and H. Weller, “Self-Assembly of ZnO: From Nanodots to Nanorods,” Angew. Chem. Int. Ed. 41 (2002) 1188-1191.
[82] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[83] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science. 295 (2002) 2418-2421.
[84] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[85] A.S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[86] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[87] Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir. 11 (1995) 3333-3336.
[88] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids and Surfaces A: Physicochem. Eng. Aspects. 219 (2003) 1-6.
[89] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J. 8 (2008) 880-884.
[90] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[91] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[92] B. Fuhrmann, H. S. Leipner, H. R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy,” Nano. Lett. 5 (2005) 2524-2527.
[93] K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[94] X. C. Li, K. Liang, B. K. Tay, and E. H. T. Teo, ” Morphology-Tunable Assembly of Periodically Aligned Si Nanowire and Radial pn Junction Arrays for Solar Cell Applications,” Appl. Surf. Sci. 258 (2012) 6169–6176.
[95] S. J. Chang, T. J. Hsueh, I C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, “Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,” IEEE T Nanotechnol. 7 (2008) 754-759.
[96] Q. Qia, T. Zhang, L. Liu, X. J. Zheng, Q. J. Yu, Y. Zeng, and H. B. Yang, “Selective Acetone Sensor Based on Dumbbell-Like ZnO with Rapid Response and Recovery,” Sensor. Actuat. B-Chem 134 (2008) 166–170.
[97] Parthibavarman, V. Hariharan, and C. Sekar, “High-Sensitivity Humidity Sensor Based on SnO2 Nanoparticles Synthesized by Microwave Irradiation Method,” Mat. Sci. Eng. C-Mater 31 (2011) 840–844.
[98] S. C. Lee, S. Y. Kim, W. S. Lee, S. Y. Jung, B. W. Hwang, D. Ragupathy, D. D. Lee, S. Y. Lee, and J. C. Kim, “Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents,” Sensors. 11 (2011) 6893-6904.
[99] Y. Li, J. Liang, Z. L. Tao, and J. Chen, “CuO Particles and Plates: Synthesis and Gas-Sensor Application,” Mater. Res. Bull. 43 (2008) 2380–2385.
[100] P Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, “Sputtered Copper Oxide (CuO) Thin Films for Gas Sensor,” J. Phys.: Condens. Matter. 18 (2006) 2417–2420.
[101] M. Tonezzer, N. V. Hieu, “Size-Dependent Response of Single-Nanowire Gas Sensors,” Sensor. Actuat. B-Chem. 163 (2012) 146–152
[102] Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science. 293 (2001) 1289.
[103] G. G. Salgado, T. D. Becerril, H. J. Santiesteban, and E. R. Andre´s, “Porous Silicon Organic Vapor Sensor,” Opt. Mater. 29 (2006) 51–55.
[104] X. Chena, C. K. Y. Wonga, C. A. Yuanc, G. Zhanga, “Nanowire-Based Gas Sensors,” Sensor. Actuat. B 177 (2013) 178–195.
[105] F. Demami, L. Ni, R. Rogel, A. C. Salaun, L. Pichon, “Silicon Nanowires Synthesis for Chemical Sensor Applications,” Procedia. Engineering. 5 (2010) 351-354.
[106] A. A. Talin, L. L. Hunter, F. Léonard, and B. Rokad, “Large Area, Dense Silicon Nanowire Array Chemical Sensors,” Appl. Phys. Lett. 89 (2006) 153102.
[107] K. Q. Peng, X. Wang, and S. T. Lee, “Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires,” Appl. Phys. Lett. 95 (2009) 243112.
[108] S. Y. Chien, C. P. Chen, H. L. Sung, Y. M. Shang, “Effects of Silicon Nanowire Array Fabricated by Spontaneous Electrochemical Reaction on Volatile Organic Solvent Sensing,” IEEE 4th international (2011).
[109] S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001) Si Substrate,” Thin Solid Films 518 (2010) S190–S195.
[110] D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-II. Experiments,” IEEE. T. Electron. Dev ED-35 (1988) 25-37.
[111] R. K. Joshi and A. Kumar, “Room Temperature Gas Detection Using Silicon Nanowires,” Mater. Today 4 (2011) 52.
[112] S. J Kim, S. H. Lee, and C. J. Lee, “Organic Vapour Sensing by Current Response of Porous Silicon Layer,” Appl. Phys. 34 (2001) 3505–3509.
[113] G. Salgado, T. D ́ıaz Becerril, H. J. Santiesteban, E. R. Andre ́s, “Porous silicon organic vapor sensor,” Opt. Mater. 29 (2006) 51–55.
[114] H. J. In, C. R. Field, and P. E. Pehrsson, “Periodically Porous Top Electrodes on Vertical Nanowire Arrays for Highly Sensitive Gas Detection,” Nanotechnology 22 (2011) 355501.
[115] C. R. Field, H. J. In, N. J. Begue, and P. E. Pehrsson, “Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires with a Porous Electrode,” Anal. Chem. 83 (2011) 4724-4728.
[116] J. Wang, S. R. Yang, Z. Shu, B. R. Lu, S. Q. Xie, Y. Chen, E. Huq, R. Liu, X. P. Qu, “Silicon Nanowire Sensor for Gas Detection Fabricated by Nanoimprint on SU8/SiO2/PMMA Trilayer,” Microelectronic ENG 86 (2009) 1238-1242.
[117] L. Yang, H. Lin, Z. Zhang, L. Cheng, S. Ye, and M. Shao, “Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine,” Sensor. Acruat. B 177 (2013) 260-264.
[118] 孫鵬, 胡明, 李明達, 和馬雙雲, “介孔矽與大孔矽的結構、電學和氣敏特性。” Acta. Phys.-Chim. Sin, 28 (2) (2012) 489-493. |