參考文獻 |
[1] 經濟部能源局100年年報,101年6月。
[2] 行政院能源產業技術白皮書,2012年。
[3] 陳維新,江金龍,“空氣污染與防制”,高立圖書有限公司,2001年。
[4] G. Valderramaa, A. Kiennemannb, M. R. Goldwasserc. “La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane.” Journal of Power Sources, 195, 1765-1771 (2010).
[5] I. Wender. “Reactions of synthesis gas.” Fuel Processing Technology, 48, 189-297 (1996).
[6] O. Bičáková, P. Straka. “Production of hydrogen from renewable resources and its effectiveness.” International Jourmal of Hydrogen Energy, 37, 11563-11578 (2012).
[7] B. Steinhauer, M. R. Kasireddy, J. Radnik, A. Martin. “Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming.” Applied Catalysis A: General, 366, 333-341 (2009).
[8] W. D. Zhang, B. S. Liu, C. Zhu, Y. L. Tian. “Preparation of La2NiO4/ZSM-5 catalyst and catalytic performance in CO2/CH4 reforming to syngas.” Applied Catalysis A: General, 292, 138-143 (2005).
[9] M. S. Fan, A. Z. Abdullah, S. Bhatia. “Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2 catalyst: Process optimization.” International Journal of Hydrogen Energy, 36, 4875-4886 (2011).
[10] S. M. Lima, J. M. Assaf, M. A. Pena, J. L. G. Fierro. “Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane.” Applied Catalysis A: General, 311, 94-104 (2006).
[11] R. Pereniguez, V. M. Gonzalez-DelaCruz, J. P. Holgado. “Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts.” Applied Catalysis B: Environmental, 93, 346-353 (2010).
[12] G. S. Gallego, J. G. Marĺn, C. Batiot-Dupeyrat, J. Barrault, F. Mondragón. “Influence of Pr and Ce in dry methane reforming catalysts produced from La1-xAxNiO3-δ perovskites.” Applied Catalysis A: General, 369, 97-103 (2009).
[13] K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi. “CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression.” International Journal of Hydrogen Energy, 37, 11195-11207 (2012).
[14] R. J. H. Voorhoeve, D. W. Johnson, J. P. Remeika, P. K. Gallagher. “Rare-earth manganites: Catalysts with low ammonia yield in the reduction of nitrogen oxides.” Science, 195, 827 (1977).
[15] E. J. Dlugokencky, R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele. “Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically-prepared standard scale.” Journal of Geophysical Research, 110, 1029 (2005).
[16] 顧洋、申永順,“國際間溫室氣體管理標準化之發展及因應策略”,科學與工程技術期刊,第一卷第三期,94年。
[17] 蔣本基、顧洋、鄭耀文、林志森,“我國溫室氣體減量整體因應策略”,科學與工程技術期刊,第二卷第一期,95年。
[18] 談駿嵩、鄭旭翔,“台灣在二氧化碳回收及再利用上之研究現況”,國立清華大學化學工程學系,2011年。
[19] J. T. Yeh, H. W. Pennline. “Study of CO2 absorption and desorption in a packed column.” Energy Fuels, 15, 274-278 (2001).
[20] G. A. Olah, A. Goeppert, G. K. Surya Prakash. “Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.” Journal of Organic Chemistry, 74, 487-498 (2009).
[21] 洪正宗、許世雄、王淑麗,“二氧化碳捕獲技術現況及發展”,石油季刊,第46卷第3期35-47頁,台灣中油股份有限公司煉製研究所,99年。
[22] 胡興中,“觸媒原理與應用”,高立圖書有限公司,(2002)。
[23] A. P. E. York, T. C. Xiao, M. L. H. Green. “Catalysis reviews: science and engineering.” Catalysis Reviews, 49, 511-560 (2007).
[24] Y. Hu, E. Ruckenstein, H. K. Bruce, C. Gates. “Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming.” Advances in Catalysis, 48, 297 (2004).
[25] F. Fischer, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide.” Brennstoff Chem., 3, 39 (1928).
[26] M. C. J. Bradford, M. A. Vannice. “CO2 reforming of CH4.” Catalysis Reviews: Science and Engineering, 41, 1-42 (1999).
[27] G. S. Gallego, F. Mondragόn, J. Barrault, J. M. Tatibouet, C. B. Dupeyrat. “Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor-Characterization of carbon deposition.” Catalysis Today, 133-135, 200-209 (2008).
[28] M. S. Fan, A. Z. Abdullah, S. Bhatia. “Catalytic technology for carbon dioxide reforming of methane to synthesis gas.” ChemCatChem, 1, 192-208 (2009).
[29] L. D. Vella, J. A. Villoria, S. Specchia, N. Mota, J. L. G. Fierro, V. Specchia. “Catalytic partial oxidation of CH4 with nickel–lanthanum-based catalysts.” Catalysis Today, 171, 84-96 (2011).
[30] P. E. Nolan, D. C. Lynch, A. H. Cutler. “Carbon deposition and hydrocarbon formation on group VIII metal catalyst.” The Journal of Physical Chemistry B, 102, 4165-4175 (1998).
[31] S. G. Wang, Y. W. Li, J. X. Lu, M. Y. He, H. J. Jiao, “A detailed mechanism of thermal CO2 reforming of CH4.” Journal of Molecular Structure, 673, 181-189 (2004).
[32] G. Valderrama, M. R. Goldwasser, C. U. Navarro, J. M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, F. Martĺnez. “Dry reforming of methane over Ni perovskite type oxides.” Catalysis Today, 107-108, 785-791 (2005).
[33] J. Rostrup-Nielsen. “Steam reforming of hydrocarbons. A historical perspective. ” Surface Science and Catalysis, Vol. 147, 121-126 (2004).
[34] J. Xu, L. Chen, K. F. Tan, A. Borgna, M. Saeys. “Effect of boron on the stability of Ni catalysts during steam methane reforming.” Journal of Catalysis, 261, 158-165 (2009).
[35] M. R. Goldwasser, M. E. Rivas, E. Pietri, M. J. Perez-Zurita, M. L. Cubeiro, L. Gingembre, L. Leclercq, G. Leclercq, “Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln = La, Sm, Nd).” Applied Catalysis A: General, 255, 45-57 (2003).
[36] X. Li, H. B. Zhang, F. Chi, S. J. Li, B. K. Xu, M. Y. Zhao, “Synthesis of nano-crystalline composite oxides La1-xSrxFe1-yCoyO3 with the perovskite structure using polyethylene glycol-gel method.” Materials Science and Engineering, 18, 209-213 (1993).
[37] J. S. Choi, K. I. Moon, Y. G. Kima, J. S. Lee, C. H. Kimb, D. L. Trimm, “Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts.” Catalysis Letters, 52, 43-47 (1998).
[38] S. G. Wang, D. B. Cao, Y. W. Li, J Wang, H. Jiao. “CO2 reforming of CH4 on Ni(111): A density functional theory calculation.” The Journal of Physical Chemistry B, 110, 9976-9983 (2006).
[39] M. Haghighi, Z. Q. Sun, J. h. Wu, J. Bromly, H. L. Wee, E. Ng, Y. Wang, D. K. Zhang. “On the reaction mechanism of CO2 reforming of methane over a bed of coal char.” Proceedings of the Combustion Institute, 31, 1983-1990 (2007).
[40] X. Li, S. Li, Y. Yang, M. Wu, F. He. “Coke formation and coke species of nickel-based catalysts in CO2 reforming of CH4.” Catalysis Letters, 118, 1-2 (2007).
[41] M. E. Rivas, J. L. G. Fierro, M. R. Goldwasser, E. Pietri, M. J. Pérez-Zurita, A. Griboval-Constant, G. Leclercq. “Structural features and performance of LaNi1-xRhxO3 system for the dry reforming of methane.” Applied Catalysis A: General, 344, 10-19 (2008).
[42] C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, J. M. Tatibouët. “Pulse study of CO2 reforming of methane over LaNiO3.” Applied Catalysis A: General, 248, 143-151 (2003).
[43] Y. Cui, H. Xu, Q. Ge, W. Li. “Kinetic study on the CH4/CO2 reforming reaction: Ni-H in Ni/α-Al2O3 catalysts greatly improves the initial activity.” Journal of Molecular Catalysis A, 243, 226-232 (2006).
[44] 許維真,“鈣鈦礦型 LaNiO3觸媒應用於 CH4/CO2重組反應之研究”, 碩士論文,國立成功大學,97年1月。
[45] R. J. H. Voorhoeve. “Perovskite-related oxides as oxidation-reduction catalysts.” Advanced Material in Catalysis, 129-180 (1977).
[46] Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, J. B. Carda. “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments.” Journal of the European Ceramic Society, 23, 213-220 (2003).
[47] M. P. Pechini. “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor.” US Patent, 3, 330-697 (1967).
[48] M. P. Pechini. “Barium titanium citrate, barium titanate and processes for producing same.” U.S. Pat., 3, 231-328 (1966).
[49] J. Zhua, A. Thomas. “Perovskite-type mixed oxides as catalytic material for NO removal.” Applied Catalysis B: Environmental, 92, 225-233 (2009).
[50] H. Falcόn, J. A. Barbero, J. A. Alonso, M. J. MartÍnez-Lope, J. L. G. Fierro. “SrFeO3 perovskite oxides: chemical features and performance for methane combustion.” Journal of Materials Chemistry, 14, 2325-2333 (2002).
[51] E. Pietri, A. Barrios, O. Gorlzalez, M. R. Goldwasser, M. J. Pérez-Zurita, M. L. Cubeiro, J. Goldwasser , L. Leclercq, G. Leclercq, L. Gingembre. “Perovskites as catalysts precursors for methane reforming: Ru based catalysts.” Surface Science and Catalysis, 136, 381 (2001).
[52] J. Guo, H. Lou, Y. Zhu, X. Zheng. “La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4.” Materials Letters, 57, 4450-4455 (2003).
[53] S. T. Shen, H. S. Weng, “Comparative study of catalytic reduction of nitric oxide with carbon monoxide over the La1-xSrxBO3 (B = Mn, Fe, Co and Ni) catalysts.” Industrial Engineering Chemistry Research, 37, 2654-2661 (1998).
[54] S. M. Lima, J. M. Assaf. “Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas.” Catalysis Letters, 108, 1-2 (2006).
[55] A. J. Vizcaino, A. Carrero, J. A. Calles. “Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts.” International Journal of Hydrogen Energy, 32, 1450-1461 (2007).
[56] G. S. Gallego, C. Batiot-Dupeyrat, J. Barrault, E. Florez, F. Mondragόn. “Dry reforming of methane over LaNi1-yByO3-δ (B = Mg, Co) perovskites used as catalyst precursor.” Applied Catalysis A: Chemical, 334, 251-258 (2008).
[57] R. Pereñíguez, V. M. González-DelaCruz, J. P. Holgado, A. Caballero. “Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts.” Applied Catalysis B: Environmental, 93, 346-353 (2012).
[58] G. R. Moradi, F. Khosravian, M. Rahmanzadeh. “Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming.” Chinese Journal of Catalysis, 33, 797-801 (2012).
[59] M.H. Pham, V. Goujard, J.M. Tatibouet, C. Batiot-Dupeyrat. “Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons-Influence of La2O3/γ-Al2O3 catalyst.” Catalysis Today, 171, 67-71 (2011).
[60] G. Valderrama, M. R. Goldwasser, C. U. Navarro, J. M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, F. Martínez. “Dry reforming of methane over Ni perovskite type oxides.” Catalysis Today, 107-108, 785-791 (2005).
[61] J. Zhu, X. Peng, L. Yao, X. Deng, H. Dong, D. Tong,C. Hu. “Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience.” International Journal of Hydrogen Energy, 38, 117-126 (2013).
[62] Y. Li, D. Li, G. Wang. “Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review.” Catalysis Today, 162, 1-48 (2011).
[63] M. Garcia-Dieguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia, L.J. Alemany. “Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane.” Journal of Catalysis, 270, 136-145 (2010).
[64] M. Aono, S. Aizawa, N. Kitazawa, Y. Watanabe. “XPS study of carbon nitride films deposited by hot filament chemical vapor deposition using carbon filament.” Thin Solid Films, 516, 648-651 (2008).
[65] K. Tabata, Y. Hirano, E. Suzuki. “XPS studies on the oxygen species of LaMn1-xCuxO3+λ.” Applied Catalysis A: General, 170, 245-254 (1998).
[66] S. M. Lima, J. M. Assaf, M. A. Pena, J. L. G. Fierro. “Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane.” Applied Catalysis A: General, 311, 94-104 (2006). |