摘要(英) |
The agroecosystems of irrigated area are experiencing frequent and pronounced water imbalances such as water deficit which is more serious in rain-feed area as a consequence of global climate change.
Taiwan average annual rainfall is approximately 2,500 mm. In particular, 80% of the rainfall occurs in summer, and most of the heavy rainfall is caused by typhoons. The situation is worsening as climate change results in uneven rainfall, both in spatial and temporal terms. Moreover, climate change has resulted the variations in the seasonal rainfall pattern of Taiwan, thereby aggravating the problem of drought and flooding. However, due to increasing demands and continuous competition for high quality water resources in the agricultural-industrial-domestic triangle, it is unrealistic to expect further expansion of agricultural irrigation. But it’s possible to enhance the flexibility of water regulation by increasing the accuracy of water use under limited water resources. Since the irrigation water distribution system is mostly manually operated, which produces difficulty with regard to the accurate calculation of conveyance losses of channels and fields. Therefore, making agricultural water usage more efficient in the fields and increasing operational accuracy by using modern irrigation systems can ensure appropriate irrigation and sufficient yield during droughts. If agricultural water, which accounts for 70% of the nation’s total water usage, can be allocated more precisely and efficiently, it can improve the efficacy of water resource allocation.
In this study, a system dynamic model was used to establish an irrigation water management model for a companion and intercropping field in Central Taiwan. In addition to rainfall replenishment, both surface water and groundwater were considered as water sources for irrigation use. The intelligent irrigation management system established in this study can automatically calculate the water requirement of intercroping fields through the field monitoring equipment to obtain the current water depth and related hydrological parameters and automatically determine whether the channel water sources are sufficient and choose to use open channels or groundwater sources for irrigation. The precise irrigation system effectively improved the accuracy and the performance of field irrigation management in the mixed cropping area in the study region.
The model simulated two scenarios by reducing 30% and 50% of the planned irrigation water in year 2013. Results indicated that the field storage in the end block of the study area was lower than the wilting point under the 50% reduced irrigation water scenario. The original irrigation plan can be reduced to be more efficient in water usage, and a 50% reduction of irrigation can be applied as a solution of water shortage when drought occurs. However, every block should be irrigated in rotation, by adjusting all water gates more frequently to ensure that the downstream blocks can receive the allocated water to get through the drought event.
In addition, this study simulated the hydrological conditions of the 2nd crop season in year 2015. It shows that if the water supply in the upstream irrigation area is controlled by the model and some of the water supplied by the groundwater, the amount of water used from channel can be relatively reduced. In other words, to reach the water allocation for downstream irrigation use, groundwater sources for the upstream area can be appropriately used for irrigation, which enabling each rotation block to pass through the water shortage period. The historical data of groundwater level monitoring wells in the upstream and downstream location of the study area are extended to be discussed in this study. The changes of local groundwater level are analyzed and compared. The results show that the volume of the pumping water is still within a reasonable range for the local groundwater level. Therefore, if the groundwater is properly used as a supplementary irrigation source after assessment and monitoring of the groundwater level changes in the upstream irrigated area, groundwater can be used more reasonably and effectively to solve the problem of water allocation during the drought period. At the same time, the smart irrigation management system established in this research can be operated effectively to use the big data collected from field monitoring. After cloud computing via the Internet of Things (IoT), it will automatically calculate and provide decision-making references for the selection of farmland irrigation water and water sources. The results will help to improve field irrigation management performance and achieve the goal of improving irrigation and water conservation. |
參考文獻 |
1.駱安華,「迴歸水之計算和運用」,臺灣水利,第8卷第2期,1960。
2.徐世大、聯合國亞洲暨遠東經濟委員會防洪及水資源開發局,水文語彙,經濟部水資源統一規劃委員會出版,民國六十一年。
3.羅樹孝,水文學辭典,茂昌圖書,台北市,民國八十四年。
4.陳豐文,「農地可再利用迴歸水之調查研究-以桃園地區為例」,私立中原大學土木工程學系,碩士論文,1999。
5.行政院農業委員會、財團法人七星農田水利研究發展基金會,農業工程技術辭典,民國九十一年。
6.陳獻、蔡西銘、陳豐文、陳靖薇、劉日順,「水田灌溉後迴歸水估算模式之建立及應用」,農業工程學報,第51卷第2期,第41-61頁,94年6。
7.徐龍淵、徐恭也,「迴歸水利用現狀及加強方法」,農田水利,第34卷第8期,1986。
8.林啟超,「水田灌溉用水迴歸利用之研究」,國立臺灣大學農業工程學系,碩士論文,1997。
9.臺灣省水利局,「新竹苗栗地區水資源繼續調查研究計畫報告-苗栗公館區後龍溪河道與穿龍圳灌區水之動態研究」,1972。
10.雲林農田水利會,「雲林灌區迴歸水有效利用調查研究」,1991。
11.簡傳彬、李總集、李英正、吳瑞賢、溫志超、杻家慶,「水稻田迴歸水量量測及初步分析」,89年度農業工程研討會論文集,pp.575-582,2000。
12.財團法人農業工程研究中心,「石岡壩南幹渠道可再利用迴歸水源調查」,1996。
13.劉日順,「水田灌溉後可再利用迴歸水推估模式之研究」,私立中原大學土木工程學系,碩士論文,2001。
14.陳靖薇,「區域迴歸水推估模式之建立與應用」,私立中原大學土木工程學系,碩士論文,2004。
15.劉君帆,「灌溉系統迴歸水推估方法之研究-以嘉南水利會為例」,國立臺灣大學農業工程學系,碩士論文,1997。
16.Kan C. E. and Chang Y. C., “The impacts of over-irrigation toward return flow and percolation in paddy field”, 1998 Sino-Japanese Workshop on the Agricultural Development and Engineering, p191-216,1998.
17.范世億,「灌溉迴歸水再利用系統之合理供給率研究」,國立中興大學土木工程學系,博士論文,2012。
18.林癸妙,「水田迴歸水之研究」,國立中央大學土木工程學系,碩士論文,1998。
19.吳珮菁,「水田迴歸水之模式及驗證」,國立中央大學土木工程學系,碩士論文,1999。
20.高振程,「水田坵塊系統之迴歸水量推估」,國立中央大學土木工程學系,碩士論文,2003。
21.鄭明昇,「桃園灌區之區域迴歸水分析研究」,國立中央大學水文科學研究所,碩士論文,2007。
22.Oad R. and DiSpigno M, “Water rights to return flow from urban landscape irrigation”, Journal of Irrigation and Drainage Engineering, ASCE, Vol.123, Issue 4, pp.293-299, 1997.
23.Zulu G., Toyota M. and Misawa S. I., “Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem”, Agricultural Water Management, Vol.31, Issue 3, pp.269-283, 1996.
24.Dewandel B., Gandolfi J. M., Condappa D. and Ahmed S., “An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale”, Hydrological Processes, Vol.22, Issue 11, pp.1700-1712, 2007.
25.Kim H.K., Jang T.I., Im S.J. and Park S.W., “Estimation of irrigation return flow from paddy fields considering the soil moisture”, Agricultural Water Management, Vol.96, Issue 5, pp.875-882, 2009.
26.Kang M. and Park S., “Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations”, Agricultural Water Management, Vol.143, pp 131-141, 2014.
27.Agrawal M. K., Panda S. N., M. ASCE, and Panigrahi B.,” Modeling water balance parameters for rainfed rice”, Journal of Irrigation and Drainage Engineering, Vol.130, Issue 2, pp129-139, 2004.
28.許良瑋,「桃園埤塘輪灌系統之模擬分析」,國立中央大學土木工程學系,碩士論文,2011。
29.吳瑞賢、李明旭、陳世偉,「農業區地表水系統之模擬與推估」,農業工程學報,第57卷,第1期,第76-91頁,2011。
30.Xie X. H. and Cui Y. L., “Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice”, Journal of Hydrology, Vol.396, Issues 1-2, pp. 61-71, 2011.
31.Bhadra A., Bandyopadhyay A., Singh R. and Raghuwanshi N. S., “Development of a user friendly water balance model for paddy”, Paddy and Water Environment, Vol.11, Issue 1-4, pp.331-341, 2013.
32.Wu R. S., Liu J. S., Chang S.Y. and Hussain F.,” Modeling of mixed crop field water demand and a smart irrigation system”, Water, Vol.9, Issue 11, 885, 2017.
33.吳瑞賢、劉日順、張聖瑜、蘇家陞、陳佩螢,「建立水旱作混植區之地表水與地下水聯合灌溉管理模式」,農業工程學報,第64卷,第1期,第60-90頁,2018。
34.行政院農業委員會,農田水利新南向政策輸出技術評估規劃(計畫編號:106農科-8.1.4-利-b1),106年度農業科技計畫研究報告,2017。
35.行政院農業委員會,灌溉排水營運管理,第三版,2003。
36.甘俊二、鄭俊澤、張煜權,「超量灌溉對環境影響之研究」,中國農業工程學會,1996。
37.Smith M., Allen R., Monteith J.L., Perrier A., Pereira S. L., Segeren A., “Expert consultation on revision of FAO methodologies for crop water requirements”, Land and Water Development Division, Food and Agriculture Organization of United Nations, Rome, Italy, 1992.
38.施嘉昌,「排水工程」,國立編譯館,台北市,1988。
39.施嘉昌、曹以松、甘俊二、徐玉標,「灌溉排水原理」,中央圖書出版社,1982。
40.徐年盛、黃浩烈、吳呈懋、鄭文明,「臺灣地區水田面積遞減後對地下水補注衝擊評估」,推廣水田生態環境保護及灌溉營運管理制度改進計畫報告(計畫編號: 94農發-5.1-利-05),行政院農業委員會,台北市,2005年12月。
41.連宛渝,「氣候變遷對臺灣水稻灌溉需水量及潛能產量之影響」,國立臺灣大學農業工程學系,碩士論文,民國89年。
42.姚銘輝、陳守泓,「利用渦流相關系統量測水稻田蒸發散量及作物係數」,2005水稻田農業多樣性機能研討會,第227-240頁,台中市, 2005年5月25日。
43.Allen R. G., Pereira L.S., Raes D., Smith M., “Crop evapotranspiration- Guidelines for computing crop water requirements”, FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of United Nations, Rome, Italy, pp.104-126, 1998.
44.Cabangon R. J., Tuong T. P. and Abdullah N.B., “Comparing water input and water productivity of transplanted and direct-seeded rice production systems”, Agricultural Water Management, Vol.57, Issue 1, pp. 11-31, 2002.
45.陳世楷,「水稻田入滲試驗與數值模擬」,國立臺灣大學農業工程學系,博士論文,1999。
46.Sharma P. K. and De Datta S. K., “Effects of puddling on soil physical properties and processes”, Soil Physics and Rice, pp. 217-234. International Rice Research Institute(IRRI), Los Banos, Philippines, 1985.
47.Bear J., Hydraulics of Groundwater, Dover Publications, INC., Mineola, New York, 1979.
48.蔡欣妤,「以系統動力模式評估農業灌溉系統之研究」,國立中央大學土木工程學系,碩士論文,2009。
49.張聖瑜,「田間精密灌溉用水模式及管理機制之建立」,國立中央大學土木工程學系,碩士論文,2015。
50.陳佩螢,「建立水旱作混植區之地表水與地下水聯合灌溉管理模式」,國立中央大學土木工程學系,碩士論文,2017。
51.陳世偉,「區域多元化水資源調配之研究」,國立中央大學土木工程學系,博士論文,2007。
52.蘇家陞,「水稻旱作混植輪區精密灌溉用水模式建立」,國立中央大學土木工程學系,碩士論文,2016。
53.行政院農業委員會,「種水田增加滲漏效率之技術性探討」,2002。
54.甘俊二,「臺灣傳統水稻一期作淺水栽培之排水口控制水深」,2000。 |