博碩士論文 100521020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.146.35.53
姓名 鄭士平(Chih-ping Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具全自動自我校正技術之 內建抖動量測電路應用於高速串列傳輸
(A Built-In Jitter Measurement Circuit with Auto-Calibration Techniques for High Speed Serial Link)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電路密度和電路操作頻率隨著製程演進而逐漸提升,導致抖動量測的成本提高。為了降低抖動量測的成本,有人提出了內建測抖動量測電路。然而,內建抖動量測電路容易受到製程變異的影響,使抖動量測的解析度發生漂移。為了降低解析度的漂移量,需要對抖動量測電路進行校正,但傳統的校正方式的時間效率不高。因此,本論文提出可應用於高速串列傳輸且具全自動自我校正技術之內建抖動量測電路。
為了量測週期對週期抖動,我們採用了無需額外參考信號源的自我取樣電路,而為了能改善解析度,此次電路採用了多相位振盪器和時間放大電路。多相位振盪器被用來產生高頻的多相位取樣頻率,提供多項位取樣電路使用,而時間放大電路則用來放大輸入時間差,強化整體解析度。為了降低製程變異的影響,自動校正電路對多相位振盪器的解析度以及時間放大電路的增益進行校正。經過自動校正電路改善後,整體解析度的漂移量降低了65%。此次內建抖動量測晶片使用TSMC 180 nm 1P6M CMOS製程實現,其量測3 GHz 時脈抖動之解析度為2.58 ps,整體晶片面積為908 um × 908 um,而核心電路面積為476 um × 372 um,供應電壓為1.8 V,電路功率消耗為58 mW。雖然功率消耗有些高,但內建抖動量測電路只在抖動量測時才啟動。
摘要(英) With the circuit density and operational frequency increasing, the cost of off-chip jitter measurement rises. Built-in jitter measurement (BIJM) circuits are invented to reduce the off-chip jitter measurement complexity and therefore, the cost is reduced. However, the BIJM resolution is sensitive to process variation, and the conventional calibration method lacks time efficiency. Thus, this thesis presents a BIJM circuit with auto-calibration techniques for 3 GHz serial link clock signal measurement.
To measure the cycle-to-cycle jitter, a self-referenced circuit, without an external reference clock, is applied. A multi-phase oscillator (MPO) and a timing amplifier (TA) are used to generate the high-speed multi-phase outputs for a multi-phase sampler (MPS) and to enhance the timing resolution. In order to decrease the process variation impact, the calibration circuits are applied to calibrate the MPO timing resolution and the TA gain. They are rewarded with a reduction of the variation of the total timing resolution by 65%. The jitter measurement resolution of 3 GHz clock is 2.58 ps after calibration. The experimental chip of the proposed BIJM was implemented by TSMC 180 nm 1P6M CMOS process. The chip size is 908 um × 908 um. The core area is 476 um × 372 um. The power consumption is 58 mW including calibration circuit and the supply voltage is 1.8 V. Although the power consumption seems to be high, the proposed BIJM circuit is active only when jitter measurement is required
關鍵字(中) ★ 全自動自我校正
★ 內建抖動量測
★ 時間放大器
★ 多相位振盪器
關鍵字(英) ★ Auto-Calibration
★ Built-In Jitter Measurement
★ Timing Amplifier
★ Multi-phase Oscillator
論文目次 Abstract i
誌謝 iv
Contents v
Figure Captions vii
Table Captions ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 3
Chapter 2 Jitter Category and BIJM Schemes 4
2.1 Jitter 4
2.2 Jitter Category in Measurement 5
2.3 Built-in Jitter Measurement Circuits 6
2.3.1 VERNIER DELAY LINE BASED TDC [4] 7
2.3.2 VERNIER RING OSCILLATOR BASED TDC [12] 7
2.3.3 CYCLIC PULSE-SHRINKING TDC [14] 8
2.3.4 TDC EMBEDDED IN CHARGE-PUMP PLL [16] 9
2.3.5 TDC WITH TIMING AMPLIFIER CIRCUITS [13] 9
2.3.6 SUMMARY 11
Chapter 3 Architecture of BIJM 13
3.1 Self-referenced Circuit 15
3.2 Multi-phase Oscillator 17
3.3 Timing Amplifier 20
3.4 Multi-phase Sampler 23
3.5 Write / Read Counter 24
Chapter 4 Calibration Technique in BIJM 25
4.1 Calibration Circuit of Multi-phase Oscillator 27
4.2 Calibration Circuit of Timing Amplifier 29
4.3 Calibration Result of Total timing Resolution 32
Chapter 5 Design Considerations and Measurement 34
5.1 Design Flow 34
5.2 Layout Consideration 36
5.3 Microphotograph and Measurement Environment Setup 38
5.4 Measurement Result 40
5.5 Measurement Error Analysis 45
Chapter 6 Conclusion and Future Work 46
6.1 Conclusion 46
6.2 Future Work 46
References 47
參考文獻 [1] B. Kaminska, “BIST means more measurement options for designers,” News EDN, pp. 161–166, Dec. 2000.
[2] T. Rahkonen and J. Kostamovaara, “The use of stabilized CMOS delay lines for the digitization of short time intervals,” IEEE J. Solid-State Circuits, vol. 28, no.8, pp. 887–894, Aug. 1993.
[3] S. Sunter and A. Roy, “BIST for phase-locked loops in digital applications,” in Proc. IEEE Int. Test Conf., 1999. pp. 532–540.
[4] A. Chan and G. Roberts, “A jitter characterization system using a component-invariant vernier delay line,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no.1, pp. 79–95, Jan. 2004.
[5] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: a SoC infrastructure” IEEE Des. Test Comput., vol. 19, no.3, pp. 22–34, May–Jun. 2002.
[6] K. Nose, M. Kajita, and M. Mizuno, “A 1-ps resolution jitter measurement macro using interpolated jitter oversampling,” IEEE J. Solid-State Circuits, vol. 41, no.12, pp. 2911–2920, Dec. 2006.
[7] S.-Y. Jiang, K.-H. Cheng, and P.-Y. Jian, “A 2.5-GHz built-in jitter measurement system in a serial-link transceiver,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no.12, pp. 1698–1708, Dec. 2009.
[8] T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-to-digital converter with vernier delay mismatch compensation for high resolution on-die clock jitter measurement,” in Proc. IEEE Symp. on VLSI, 2008, pp. 166–167.
[9] R. Rashidzadeh, M. Ahmadi, and W. C. Miller, “An all-digital self-calibration method for a vernier-based time-to-digital converter,” IEEE Trans. Instrum. Meas., vol. 59, no. 2, pp.463–469, Feb. 2010.
[10] R. Rashidzadeh, R. Muscedere, M. Ahmadi, and W. C. Miller, “A Delay Generation Technique for Narrow Time Interval Measurement,” IEEE Trans. Instrum. Meas., vol. 58, no. 7, pp.2245–2252, Jul. 2009.
[11] N. Soo, “Jitter measurement techniques,” Pericom, Application Brief AB36, pp. 1–3, Nov. 2000.
[12] K.-H. Cheng, J.-C. Liu, C.-Y. Cang, S.-Y. Jiang, and K.-W. Hong, “Built-in jitter measurement circuit with calibration techniques for a 3-ghz clock generator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.19, no.8, pp.1325–1335, Aug. 2011.
[13] M. Lee and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse–fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no.4, pp. 769–777, Apr. 2008.
[14] G. W. Roberts and M. Ali-Bakhshian, “A brief introduction to time-to-digital and digital-to-time converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 153–157, Mar. 2010.
[15] S. Sunter and A. Roy, “On-chip digital jitter measurement, from megahertz to gigahertz,” IEEE Des. Test Comput., vol. 21, no.4, pp. 314–321, Jul.–Aug. 2004.
[16] T. Xia and J.-C. Lo, “Time-to-voltage converter for on-chip jitter measurement,” IEEE Trans. Instrum. Meas., vol. 52, no. 6, pp.1738–1748, Dec. 2003.
[17] T. Xia, H. Zheng, J. Li, and A. Ginawi, “ Self-refereed on-chip jitter measurement circuit using vernier oscillators,” in Proc. IEEE Comput. Soc. Annu. Symp. on VLSI, 2005, pp. 218–223.
[18] J. C. Hsu and C. C. Su, “BIST for measuring clock jitter of charge-pump phase-locked loops,” IEEE Trans. Instrum. Meas., vol. 57, no. 2, pp.276–284, Feb. 2008.
[19] K.-H. Cheng, J.-C. Liu, H.-Y. Huang, Y.-L. Li, and Y.-J. Jhu, “A 6 GHz built-in jitter measurement circuit using multi-phase sampler,” IEEE Trans. on Circuits and Syst. II, Exp. Briefs, vol.19, no.58, pp.492–496, Aug. 2011.
[20] K.-F. Un, P.-I. Mak, and R. P. Martins, “Analysis and design of open-loop multiphase local-oscillator generator for wireless applications,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 57, no. 5, pp. 970–981, May 2010.
[21] K. Niitsu, M. Sakurai, T. J. Yamaguchi, and H. Kobayashi, “CMOS Circuits to Measure Timing Jitter Using a Self-Referenced Clock and a Cascaded Time Difference Amplifier With Duty-Cycle Compensation,” IEEE J. Solid-State Circuits, vol. 47, no.11, pp. 2701–2710, Nov. 2012.
[22] Z. Lin, A. Carpenter, B. Ciftcioglu, A. Garg, M. Huang, and H. Wu, “Injection-locked clocking: a low-power clock distribution scheme for high-performance microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 9, pp. 1251–1256, Sep. 2008.
[23] P. Chen, S. I. Liu, and J.Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Trans. Circuits Syst. II, Analog Digit.Signal Process., vol. 47, no. 9, pp. 954–958, Sep. 2000.
指導教授 鄭國興(Kuo-hsing Cheng) 審核日期 2013-10-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明