博碩士論文 100521044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.136.22.184
姓名 黃宣瑋(Hsuan-Wei Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 銻化銦鎵/銻化鋁高電洞遷移率電晶體
(Fabrication and Characterization of InGaSb/AlSb High Hole Mobility Transistors)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 銻化銦鎵合金材料具備了化合物半導體塊材中最高的電洞遷移率,搭配上銻化物系列磊晶也同樣具備了極高電子遷移率的特性,使該磊晶系統可以形成類似CMOS的架構,特別適合應用在數位電路的領域上。本論文所使用的磊晶架構是由兩個較寬能隙的材料銻化鋁夾擠一較窄能隙的材料銻化銦鎵,形成第一型態的能帶結構,也就是量子井結構。在此結構中,主要載子電洞可以良好的被侷限在量子井內,形成一個高載子濃度與低片電阻的磊晶層,元件就可以利用該磊晶層而獲得大電流的結果。
本論文研究的銻化物磊晶主要設計包括上阻擋層的鈹摻雜,使通道的載子濃度提升,獲得大的操作電流。其次是調整底部緩衝層的厚度,使元件在截止狀態時可以壓低來自於底部的漏電流。最後把磊晶結構成長於矽基板之上,完成元件製作。在矽基板的磊晶元件製作上,利用離子佈植的方式成功製作出全平面型的元件,對於元件微縮的實現與長時間的操作上有很大的幫助。而元件的方面是製作T形閘極的元件,閘極線寬為0.25 μm,源極與汲極間距為2 μm,汲極飽和電流在汲極電壓為-3 V時為81.5 mA/mm,轉導值為75.0 mS/mm。元件在製作完成三個月後汲極飽和電流在相同偏壓下還具有90%的特性。
摘要(英) The fabrication and characterization of AlSb/In0.4Ga0.6Sb/AlSb quantum well HEMTs are reported. These structures have an Al0.7Ga0.3Sb/AlSb composite buffer layer under the In0.4Ga0.6Sb channel, a Be doped AlSb top barrier layer, and In0.5Al0.5As/InAs composite cap layer. The epitaxial layer on GaAs substrate exhibited a maximum hole mobility 1080 cm2/V-s, channel hole density 1.76 × 1012 /cm2, and minimal channel sheet resistance 3276 Ω/□. The epitaxial structure on Si substrate exhibited a maximum hole mobility 800 cm2/V-s, channel hole density 1.00 × 1012 /cm2, and minimal channel sheet resistance 7815 Ω/□. The 2 μm Metal-Insulator-Semiconductor High-Electron-Mobility Transistors (MIS-HEMTs) on GaAs exhibited a maximum drain current of 55.1 mA/mm, a peak transconductance of 41.8 mS/mm. Moreover, fabrication and characterization of planar HEMTs with ion-implanted isolation were discuessed. The planar 0.25 μm HEMT exhibited a maximum drain current of 85.1 mA/mm, a peak transconductance of 75.0 mS/mm. The stability against AlSb oxidation during isolation process can be achieved by the ion-implantation isolation technique implemented in plannar AlSb/In0.4Ga0.6Sb/AlSb HEMTs. The planar HEMT remained 90% drain current after three month storage in air.
關鍵字(中) ★ 銻化物
★ 高電洞遷移率
★ 電晶體
★ 全平面型電晶體
★ 次微米電晶體
關鍵字(英) ★ Sb
★ High Hole Mobility
★ Transistors
★ The planar transistors
★ Sub-μm transistors
論文目次 摘要 ........................................................................................................................................ I
Abstract ............................................................................................................................... II
致謝 .................................................................................................................................... III
目錄 ..................................................................................................................................... IV
圖目錄 ................................................................................................................................. VI
表目錄 .................................................................................................................................. X
第一章 導論 ......................................................................................................................... 1
1-1 前言 ................................................................................................................................................... 1
1-2 研究動機 .......................................................................................................................................... 1
1-3 P型通道異質接面場效應電晶體之發展現況 ..................................................................... 4
1-4 論文架構 ........................................................................................................................................ 13
第二章 製作於砷化鎵基板之元件 ................................................................................... 14
2-1 前言 .................................................................................................................................................. 14
2-2 磊晶結構 ........................................................................................................................................ 14
2-2-1應力對磊晶結構能帶的影響 ........................................................................... 14
2-2-2 基本銻化銦鎵/銻化鋁磊晶結構(Epi 838) ...................................................... 16
2-2-3 批覆層厚度調整與上阻擋層銻化鋁摻雜鈹之磊晶結構(Epi 918) ............... 20
2-2-4 調整緩衝層厚度之磊晶結構(Epi 955、1045、1064、1074) ....................... 23
2-3 元件製程 ........................................................................................................................................ 27
2-3-1 標準蕭特基閘極元件製作流程 ...................................................................... 28
2-3-2 金屬氧化物半導體閘極元件製作流程 .......................................................... 33
2-3-3 鈍化之金屬氧化物半導體閘極元件製作流程 .............................................. 36
2-3-4 離子佈植全平面型元件製作流程 .................................................................. 38
2-3-5 次微米T形閘極元件製作流程 ...................................................................... 46
2-3-6 次微米崛入式金屬氧化物半導體閘極元件製作流程 .................................. 50
2-4 製作於砷化鎵基板之元件特性 ............................................................................................. 53
2-4-1 標準蝕刻型元件 .............................................................................................. 53
2-4-2 離子佈植全平面型元件 .................................................................................. 68
2-4-3 崛入式金屬複合型氧化物半導體閘極元件 .................................................. 78
2-5 結論 .................................................................................................................................................. 84
第三章 製作於矽基板之元件 ........................................................................................... 85
3-1 前言 .................................................................................................................................................. 85
3-2 成長在矽基板上之銻化銦鎵/銻化鋁量子井磊晶結構(Epi 1063) ............................. 85
3-3 製作於矽基板之元件特性 ....................................................................................................... 89
3-3-1 光學閘極離子佈植全平面型元件 .................................................................. 89
3-3-2 次微米離子佈植全平面型元件 ...................................................................... 93
3-4 結論 ................................................................................................................................................ 100
第四章 結論與未來展望 ................................................................................................. 102
參考文獻 ........................................................................................................................... 104
參考文獻 [1] J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer, R. Bass, and H. B. Dietrich, “AlSb/InAs HEMT’s for Low-Voltage, High-Speed Applications,” IEEE Tran. Electron Decvices, vol. 45, pp. 1869-1875, 1998.
[2] S. Adachi, “Optical Dispersion Relations for GaP, GaAs, GaSb, InP, InAs, InSb,AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys., vol. 66, pp. 6030-6040, 1989.
[3] I. Vurgaftman and J. R. Meyer and L. R. Ram-Mohan,“Band Parameters for III–V Compound Semiconductors and Their Alloys,” J. Appl. Phys., vol. 89, pp. 5815-5875, 2001.
[4] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona,“Antimonide-Based Compound Semiconductors for Electronic Devices: A Review,” Solid-State Electronics, vol. 49, pp. 1875-1895, 2005.
[5] Chin-An Chang, R. Ludeke, L. L. Chang, and L. Esaki, “Molecularbeam Epitaxy (MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759-761, Dec. 1977.
[6] K. F. Longenbach and W. I. Wang,“Molecular Beam Epitaxy of GaSb,” Appl. Phys. Lett., vol. 59, no. 19, pp. 2427-2429, 1991.
[7] R. Ludeke,“Electronic Properties of (100) Surfaces of GaSb and InAs and Their Alloys with GaAs,” IBM J. Res. Dev., vol. 22, pp. 304-314, 1978.
[8] R. Tsai, M. Barsky, J. B. Boss, J. Lee, N. A. Papanicolaou, R.Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for Low-Power, High-Speed Electronics,” Proc. IEEE GaAs Digest., pp. 294-297, 2003.
[9] F. L. Schuermeyer, P. Cook, E. Martinez, and J. Tantillo, “Band Alignment in Heterostructures”, Appl. Phys. Lett., vol. 55, pp. 1877-1878, 1989.
[10] J. B. Boos, B.R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass and B. V. Shanabrook, “High Mobility P-Channel HFETs Using Strained Sb-Based Materials,” Electron. Lett., vol. 43, pp. 834-835, 2007.
[11] J. B. Boos, B. R. Bennet, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park and B. V. Shanabrook, “Sb Based N- and P-Channel Heterostructure FETs for High-Speed, Low-Power Applications,” IEICE Trans. Electron., vol. E91-C, pp. 1050-1057, 2008.
[12] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny,
105
M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding and R. Chau, “High Performance 40nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (VCC = 0.5V) Logic Applications,” IEEE International Electron Devices Meeting, pp. 1-4, 2008.
[13] A. Nainani, Z. Yuan, T. Krishnamohan, B. R. Bennett, J. B. Boos, M. Reason, M. G. Ancona, Y. Nishi, and K. C. Saraswat, “InxGa1-xSb Channel P-Metal-Oxide-Semiconductor Field Effect Transistors:Effect of Strain and Heterostructure Design,” J. Appl. Phys., vol. 110, pp. 014 503-1–014 503-9, 2011.
[14] Z. Yuan, A. Nainani, B. R. Bennett, J. B. Boos, M. G. Ancona, K. C. Saraswat, “Heterostructure Design and Demonstration of InGaSb Channel III-V CMOS Transistors,” International Semiconductor Device Res. Symposium, December 7-9, 2011.
[15] H.C. Ho, Z. Y. Gao, H. K. Lin, P. C. Chiu, Y. M. Hsin, and J. I. Chyi, “Device Characteristics of InGaSb/AlSb High-Hole-Mobility FETs,” Electron Device Lett., vol. 33, no. 7, pp. 964-966, 2012.
[16] J. W. Matthews and A. E. Blakeslee, “Defects in Epitaxial Multilayers. I. Misfit Dislocations,” Jour. Crys. Grow., vol. 27, pp.118-125, 1974.
[17] B. R. Bennett, J. B. Boos, M. G. Ancona, N. Papanicolaou, J. G. Champlain, R. Bass, and B. V. Shanabrook, “Mobility Enhancement in Strained Antimonide Quantum Wells” M. Scie. Tech., pp. 176-177, 2008.
[18]高宗延, “P型通道銻化物異質介面場效電晶體之元件發展與特性分析,” 碩士論文, 國立中央大學, 2012.
[19] H. K. Lin,“The Design, Growth, and Characterization of Antimonide-Baded Composite-Channel-Heterostructure Field-Effect-Transistor,” Ph.D. dissertation, UC Santa Barbara, 2004.
[20]陳彥凱, “銻化物金屬-絕緣物-半導體異質接面場效電晶體之元件發展與特性研究,” 碩士論文, 國立中央大學, 2012.
[21] G. Moschetti, Per-Åke Nilsson, A. Hallén, L. Desplanque, X. Wallart, and J. Grahn,“Planar InAs/AlSb HEMTs With Ion-Implanted Isolation,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 510-512, 2012.
[22] Y. Todokoro, “Double-Layer Resist Films for Submicrometer Electron-Beam
106
Lithography,” IEEE Solid State Circuits, vol. SC-15, no. 4, pp. 508-513, 1980.
[23] Dae-Hyun Kim, J. A. del Alamo, Jae-Hak Lee, and Kwang-Seok Seo,“Logic Suitability of 50-nm In0.7Ga0.3As HEMTs for Beyond-CMOS Applications,” IEEE Trans. Electron Devices, vol. 54, pp. 2606-2613, 2007.
[24] Young-Chul Byun, Chee-Hong An, Seok-Hee Lee, Mann-Ho Cho, and H. Kim, “Thermal Stability of ALD-HfO2/GaAs Pretreated with Trimethylaluminium,” The Electrochemical Society, vol. 159 (1), pp. G6-G10, 2012.
[25] H. D. Trinh, Y. C. Lin, E. Y. Chang, Ching-Ting Lee, Shin-Yuan Wang, H. Q. Nguyen, Y. S. Chiu, Q. H. Luc, Hui-Chen Chang, Chun-Hsiung Lin, S. Jang, and C. H. Diaz, “Electrical Characteristics of Al2O3/InSb MOSCAPs and the Effect of Postdeposition Annealing Temperatures,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1555-1560, 2013.
[26] M. Tabib-Azar, “A Relationship Between Interface Trap Density and Transconductance in Depletion-Mode Field Effect Transistors,” Solid-State Electronics, vol. 38, No. 7, pp. 1395-1400, 1995.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2013-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明