博碩士論文 100521083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.117.158.203
姓名 李憲昌(Hsien-Chang li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 維度經驗重心分享粒子群演算法
(PSO algorithm with Center of Gravity and Dimension Searching)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中我們提出了一種改良的粒子群演算法,名為維度經驗重心分享粒子群演算法 SDGPSO(Standard Dimension Searching with Center of Gravity PSO algorithm),其特殊的單維度搜索機制,讓其必須擁有較一般粒子群演法不同的經驗分享機制,且在前期能夠有優秀且快速的收斂能力,化簡的計算程序也能減少計算消耗時間,並且在多數函數都能夠有優良的最終收斂值,但在後期跳脫區域最優解的能力還是不如標準型粒子群演算法SPSO,所以在本論文又對SDGPSO作一個新的改良融合命名為SDGPSO-MSP (Standard Dime- nsion Searching with Center of Gravity PSO algorithm Mixing SPSO),其中本文提出的銜接機制讓SDGPSO-MSP擷取SDGPSO前期快速收斂的能力和SPSO 後期優秀的跳脫能力,讓其優缺能夠達到良好的互補。最後我們使用測試函數對SDGPSO 和SDGPSO-MSP作性能測試並且與幾個已提出的擁有優良校能粒子群演算法作比較。經由模擬結果顯示,本文所提出的單維搜索與經驗重心分享機制在銜接SPSO後整體測試都均具有優越的表現,並且SDGPSO-MSP表現出兩邊所擷取的優點甚至更加優良。
摘要(英) In this thesis we have presented an improved algorithm for Particle Swarm Optimization (PSO) named Standard Dimension Searching with Center of Gravity PSO algorithm (SDGPSO). The SDGPSO algorithm needs to have a special experience-sharing mechanism to coordinate with single-dimensional searching mechanism. These mechanisms cause the faster convergence ability in the pre-convergence and have less computing time than SPSO. However, The ability to escape local optimal solution is worse than SPSO in the post-convergence. Because of this shortcoming, we further proposed a hybrid version named SDGPSO-MSP which takes advantages of fast and excellent convergence ability from SDGPSO and obtaining the better convergent solution from SPSO. The performances of SDGPSO and SDGPSO-MSP are fairly demonstrated by applying sixteen benchmark problems and compared it with several popular PSO algorithm. The simulations of results show that our proposed methods are effective and gain better performance than other compared PSO algorithms.
關鍵字(中) ★ 粒子群演算法
★ 控制器設計
★ 分數階PID
★ 最佳化
關鍵字(英) ★ PSO
★ PID
★ FOPID
論文目次 1.緒論 p1
1.1 研究動機 p1
1.2 論文架構 p4
2.粒子群演算法 p5
2.1 粒子群演算法 p5
2.2 粒子群演算法基本公式和模式 p5
3.維度經驗重心分享粒子群演算法 p13
3.1維度經驗重心分享粒子群演算法 p13
3.2粒子單維搜索與經驗重心分享機制 p13
3.2.1單維搜索 p13
3.2.2 維度經驗重心分享粒子群演算法的更新模式 p14
3.3 維度經驗重心分享粒子群演算法的重要參數討論 p19
3.3.1維度經驗粒子重心 Dgravity p20
3.3.2粒子群平均速度 V_mean p22
3.3.3優化維度選取 K p25
3.4 維度經驗重心分享粒子群演算法與SPSO之性能比較 p29
4.維度經驗重心分享粒子群演算法與傳統粒子群演算法之互補改
良(SDGPSO-MSP) p40
4.1 SDGPSO與SPSO之互補接合架構 p40
4.2 SPSO-Mixing Dbest p41
5.測試性能結果與效能比較 p43
5.1測試方法與結果 p44
5.1.1 10維測試結果 p44
5.1.2 30維測試結果 p51
6.SDGPSO應用於FOPID控制器設計 p57
6.1 FOPID控制器 p57
6.2 Crone 近似法 p58
6.3 FOPID控制器設計 p59
6.4直流馬達(DC Motor) p61
6.5實驗結果 p62
6.5.1演算法收斂值 p62
6.5.2步階暫態響應測試結果 p66
7.總結與未來展望 p72
7.1 總結 p72
7.2 未來展望 p73
參考文獻 p74
參考文獻 [1] J. Kennedy, R. C. Eberhart, and Y. H. Shi, “Swarm Intelligence,” Morgan Kaufmann division of Acadenic, 2001.
[2] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942−1948, 1995.
[3] W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, vol. 15, pp. 3632-3639, 2010.
[4] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization: Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81-86, 2001.
[5] R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” In Proceedings of IEEE Transactions on Systems, Man and Cybernetics –Part B: Cybernetics, vol. 36, no. 6, pp. 1407-1416, 2006.
[6] D. Srinivasan , W. H. Loo and R. L. Cheu, “Traffic incident detection using particle swarm optimization,” In Proceedings of IEEE Swarm Intelligence Symposium, pp.144-151, 2003.
[7] S. –Y. Ho, H. –S. Lin, W. –H. Liauh and S. –J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” In Proceedings of IEEE Transactions on Systems, Man and Cybernetics –Part A: Systems and Humans, vol. 38, no. 2, pp. 288-298, 2008.
[8] F. Xie, Y. Wang, Z. Zheng and C. Li, “Optimal Control of Switched Linear Systems Based on Migrant Particle Swarm Optimization Algorithm,” In Proceedings of the 2010 International Conference on Modelling, Identification and Control, pp. 237-241, 2010.
[9] Y. Shi, and R. C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” Evolutionary Programming VII. Lecture Notes in Computer Science, vol. 1447, pp. 591–600, 1998.
[10] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1951−1957, 1999.
[11] N. M. Kwok, D. K. Liu, K. C. Tan and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[12] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” In Proceedings of IEEE Transaction on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.
[13] J. Jie, J. zeng, C. Han and Q. Wang, “Knowledge-based cooperative particle swarm optimization,” Applied Mathematics and Computation, vol. 205, pp. 861-873, 2008.
[14] J. Wei, L. Guangbin and L. Dong, “Elite Particle Swarm Optimization with Mutation,” 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, pp. 800-803, 2008.
[15] W. –P. Lee, W. –Y. Xian and C. –C. Wen, “Research on a Modified Particle Swarm Optimization Algorithm,” Journal of Engineering Technology, vol. 4, no. 2, pp. 51-62, 2008.
[16] Y. –T. Juang, S. –L. Tung and H. –C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, vol. 181, pp. 4539-4549, 2011.
[17] 林柏勳,胡光復,沈哲緯,鄭錦桐,“最佳化方法於工程上之應用”中興工程季刊第103期,2009年4月.
[18] C. Liu and C. Ouyang, “An adaptive fuzzy weight PSO algorithm,” In Proceedings of IEEE Fourth International Conference on Genetic and Evolutionary Computing, pp. 8-10, 2010.
[19] 董聖龍,「粒子群演算法於二階時變系統穩定分析與穩定化設計」,國立中央大學,博士論文,民國100年。
[20] M. Dorigo, V. Maniezzo and A. Colorni, “The ant system: Optimization by a colony of cooperating agents,” In Proceedings of IEEE Transactions on Systems and Cybernetics - Part B, vol. 26, no. 1, pp. 29-41, 1996.
[21] D. Fogel and H. G. Beyer “A note on the empirical evaluation of intermediate recombination,” Evolutionary Computation, vol. 3, no. 4, pp. 491-495.
[22] Y. Shi, and R. C. Eberhart, “Comparison between genetic algorithms and particle swarm optimization,” Evolutionary Programming VII. Lecture Notes in Computer Science, vol. 1447, pp. 611-616, 1998.
[23] J. Kennedy and W. M. Spears, “Matching Algorithms to Problems: An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator,” In Proceeding of IEEE World Congress on Computational Intelligence, pp. 78-83, 1988.
[24] J. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,” Cambridge, Mass: MIT Press, 1992.
[25] 王文俊,認識fuzzy,全華出版,第三版,2007。
[26] R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: Developments, applications and resources,” In Proceeding of IEEE Congress on Evolutionary Computation, pp. 81-86, 2001.
[27] R. C. Eberhart and Y. H. Shi, “A modified particle swarm optimizer,” In Proceeding of IEEE World Congress On Computational Intelligence, pp. 69-73, 1988.
[28] R. C. Eberhart and Y. H. Shi, “Empirical study of particle swarm optimization,” In Proceeding of IEEE Congress on Evolutionary Computation, pp. 1945-1950, 1999.
[29] Z. -H. Zhan, J. Zhang, Y. Li and H. S. –H. Chung, “Adaptive Particle Swarm Optimization,” In Proceedings of IEEE Transactions on Systems ,Man, and Cybernetics-Part B: Cybernetics, vol. 39, no. 6,pp. 1362-1381, 2009.
[30] A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients,” IEEE Transactions On Evolutionary Computation, pp. 240 - 255, 2004.
[31] Deepak Devicharan , Chilukuri K . Mohan, “Particle Swarm Optimization
with Adaptive Linkage Learning” Dept of EECS, 2-177 Center for Science and
Technology Syracuse University .
[32] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, pp. 281–296, 2006.
[33] Zhi-Hui Zhan, Jun Zhang ,Yun Li, Yu-Hui Shi, “ Orthogonal Learning Particle Swarm Optimization” IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 6, DECEMBER 2011
[34] R.Venkata Rao, Vivek Patel, “An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems”, International Journal of Industrial Engineering Computations 3 ,(2012)
[35] Sheng-Ta Hsieh, Tsung-Ying Sun, Chan-Cheng Liu, Shang-Jeng Tsai,“Efficient Population Utilization Strategy for Particle Swarm Optimizer” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009
[36] N. Iwasaki, K. Yasuda and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEE Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[37] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli and M. Dorigo, “Heterogeneous particle swarm optimizers,” Proceedings of IEEE congress on Evolutionary Computation, pp. 698–705, 2009.
[38] P. N. Suganthan, N. Hansen, J. J. Liang and K. Deb, Y. -P. Chen, A. Auger & S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical report of Nanyang Technological University, 2005.
[39] 陳珈妤,「快速平衡粒子群最佳化方法」,國立中央大學,碩士論文,民國100年。
[40] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,國立中央大學,碩士論文,民國99年。
[41] J. Hu, J. Zeng, Y. Yang, “A two-order Particle Swarm Optimization Model and the Selection of its Parameters,” In Proceedings of the 6th Congress on Intelligent Control and Automation, June 21-23, 2006.
[42] M. Pant, T. Radha and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” In Proceedings of IEEE International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[43] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm scheme,” In Lecture series on Computer and Computational Sciences, vol. 1, pp. 868-873, 2004.
[44] R. Mendes, J. Kennedy and J.Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, pp. 204-210, 2004.
[45] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005.
[46] 吳 讚 展,「自調整非線性慣性權重粒子群演算法」,國立中央大學,碩士論文,民國101年。
[47] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, vol. 33, no. 3, pp. 859–871, 2004.
[48] Y. Tang, M. Cui, C. Hua, L. Li and Y. Yang, “Optimum design of fractional order controller for AVR system using chaotic ant swarm,” Expert Systems with Applications, vol. 39, pp. 6689-6896, 2012.
[49] A. Biswas, S. Das, A. Abraham and S. Dasgupta, “Design of fractional-order controllers with an improved differential evolution,” Engineering Applications of Artificial Intelligence, vol. 22, pp. 243-350,2009.
[50] J. Y. Cao and B. G. Cao, “Design of Fractional Order Controller Based on Particle Swarm Optimization,” International Journal of Control, Automation and Systems, vol. 4, pp. 775-781,2006.
[51] A. A. Jalali and A. Khosravi, “Tuning of FOPID Controller Using Taylor Series Expansion,” International Journal of Scientific and Engineering Research, vol. 2, 2011.
[52] 薛定宇,趙春娜 , “分數階系統的分數階PID 控制器設計” 控制器理論與應用 Control Theory & Applications Vol. 24 No. 5 2007.
[53] I. Podlubny, “Fractional-Order Systems and Controllers,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
[54] A. Oustaloup , “La commande CRONE: commande robuste d’order non entire,” Herme’s, Paris, 1991.
[55] A. Oustaloup, X. Moreau, M. Nouillant, “The CRONE suspension,” Control Engineering Practice, vol. 4, pp. 1101-1108, 1996.
[56] G. Huang and S. Lee, “PC based PID speed control in DC motor,” IEEE International Conference on Audio, Language and Image Processing, pp. 400-407, 2008.
[57] K. A. Naik and P. Srikanth, “Stability Enhancement of DC Motor using IMC Tuned PID Controller,” International Journal of Advanced Engineering Sciences and Technologies, vol. 4, pp. 92-96, 2011.
指導教授 莊堯棠(Y-T. Juang) 審核日期 2013-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明