博碩士論文 100522054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.224.73.124
姓名 蔡旻嶧(Min-Yi Tsai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 植基於分散式粒化運算的決策產生
(Distributed Decision Generation Based on Granular Computing)
相關論文
★ 以伸展樹為基礎的Android Binder Driver★ 應用增量式學習於多種農作物判釋之研究
★ 應用分類重建學習偵測航照圖幅中的新穎坵塊★ 用於輔助工業零件辨識之尺寸估算系統
★ 使用無紋理之3D CAD工業零件模型結合長度檢測實現細粒度真實工業零件影像分類★ 一個建立在平行工作系統上的動態全球計算平台
★ 用權重參照計數演算法執行主動物件垃圾收集★ 一個動態負載平衡之最大可能性估算計算架構
★ 利用多項系統負載資訊進行動態P2P系統重組的策略研究★ 基於Hadoop系統的雲端應用程式特徵擷取與計算監測架構
★ 適用於大型動態分散式系統的調適性計算模型★ 一個提供彈性虛擬資料中心的雲端服務平台
★ 雲端彈性虛擬機房服務平台之資源控管中心★ 一個適用於自動供應雲端系統的動態調適計算架構
★ 線性相關工作與非相關工作的探索式排程策略★ 適用於大資料集高效率的分散式階層分群演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 粒化運算主要關注於在不同的資料顆粒上可以提供給使用者不一樣的觀點,並且能夠從處理這些抽象化資料的過程中取得有意義的知識。在這篇論文中除了提出了一個植基於粒化運算的決策產生演算法(DGAGC)也提出了一個植基於分散式粒化運算的決策產生演算法(MR-DGAGC),而此MR-DGAGC則是DGAGC的map/reduce版本。DGAGC 改進了一個相似的演算法(PGAGC)並包含了兩個階段,分別是規則產生階段與決策產生階段。在規則產生階段,DGAGC使用了規則合併策略和額外規則產生策略來提高規則的辨識率並提高在高粒度下規則產生的速度。在決策產生階段,DGAGC使用一個新穎的規則選擇策略從規則產生階段所產生的規則中選擇最好的規則當作最終決策。雖然使用了三種策略的DGAGC擁有更好的辨識率,但是它缺少了處理大量資料的能力。為了解決此問題,我們發展了DGAGC的map/reduce的版本(MR-DGAGC)。MR-DGAGC使用了一種香精析取法(本質析取法)的概念將DGAGC套入map/reduce框架中,這種追溯技巧大幅降低DGAGC的計算複雜度。在實驗部分也顯示了這篇論文中所提出的演算法除了比先前的演算法來的好之外也具有擴展性的能力來處理大量資料。
摘要(英) Granular computing aims to provide different views at different granules of data, and to derive knowledge from the process of data abstraction. In this paper, a decision-rule generation algorithm based on granular computing (DGAGC) is proposed and its map/reduce version MR-DGAGC is also introduced. The DGAGC improves a prior similar algorithm, the PGAGC algorithm. The DGAGC consists of two stages, the rule generation stage and the decision making stage. In the rule generation stage, the DGAGC employs a rule combination strategy and an alternative rule generation strategy to increase the recognition of rules and the speed of generating rule in higher granularity. In the decision making stage, the DGAGC provides a novel rule-choosing strategy to use reasonable rules for decision making. By using this rule-choosing strategy, a better decision is made from many reasonable rules which are generated in stage one. Although the DGAGC provides a higher recognition rate, it lacks of the ability of processing large data as the other similar algorithms. To solve the problem, we have developed a map/reduce version of the DGAGC, called the MR-DGAGC, which uses the trace-back concept to massively reduce the time complexity of the DGAGC. The experimental results show that the DGAGC has a higher true positive rate and a lower false positive rate than a prior similar study. The experimental results also show that the MR-DGAGC is scalable.
關鍵字(中) ★ 規則顆粒
★ 解空間
★ 顆粒空間
★ 粒化運算
★ 規則選擇
關鍵字(英) ★ rule granule
★ granular computing
★ rule-choosing
★ granule space
★ solution space
論文目次 摘要 I
Abstract II
Table of Contents III
Table of Figures IV
Table of Tables V
Chapter 1. Introduction 1
Chapter 2. Backgrounds 4
2-1. Granular Computing 4
2-2. The PGAGC algorithm 6
2-2-1. The Information Table 6
2-2-2. Definitions used in PGAGC 7
2-2-3. PGAGC . 8
2-2-4. An Example to Illustrate PGAGC 11
2-3. The Map/Reduce Framework 17
2-4. The Apache Hadoop 20
Chapter 3. The Proposed Algorithms 22
3-1. Problems in PGAGC 22
3-1-1. Conflict Rules Problem 22
3-1-2. Insufficient Rules Problem 23
3-2. The DGAGC Algorithm 25
3-2-1. Rule Combination Strategy 25
3-2-2. Alternative Rules Generation Strategy 27
3-2-3. Rule-choosing Strategy 29
3-2-4. DGAGC 32
3-3. The MR-DGAGC Algorithm 36
3-3-1. The Execution Efficiency Problem in DGAGC 36
3-3-2. On Modeling DGAGC with Map/Reduce 39
Chapter 4. Experimental Results 44
4-1. The Accuracy of DGAGC 44
4-2. The Scalability of MR-DGAGC 56
Chapter 5. Conclusions 63
References 64
參考文獻 [1] Y.Y. Yao, and J.T. Yao, "Granular Computing as a Basis for Consistent Classification Problems," PAKDD Workshop on Toward the Foundation of Data Mining, Vol. 5, No. 2, pp. 101-106, 2002.
[2] Y.Y. Yao, and J.T. Yao, "Induction of Classification Rules by Granular Computing," The Seventh International Conference on Rough Sets and Current Trends in Computing, pp. 331-338, 2002.
[3] Y.Y. Yao, "On Modeling Data Mining with Granular Computing," IEEE Signature Conference on Computers, Software, and Applications, pp. 638-643, 2002.
[4] Q. Liu, "Granules and Reasoning Based on Granular Computing," Developments in Applied Artificial Intelligence, Lecture Notes in Computer Science, Vol. 2718/2003, pp. 516-526, 2003.
[5] Zhen Qin, Xian-ping Tao, Yu Huang, Jian Lu, Tao Wu, "Policy Generation for Privacy Protection Based on Granular Computing," Seventh Web Information Systems and Applications Conference, pp. 53-58, 2010.
[6] Y.Y. Yao, and N. Zhong, "Granular computing using information tables," Data mining, rough sets and granular computing, pp. 102-124, 2002.
[7] B. Zhang, and L. Zhang, "The Quotient Space Theory of Problem Solving," Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, Vol. 2639/2003, pp. 585, 2003.
[8] Y.Y. Yao, "A Generalized Decision Logic Language for Granular Computing Fuzzy Systems," FUZZ-IEEE’’02 in The 2002 IEEE World Congress on Computational Intelligence, 1092-1097, 2002.
[9] G. Wang, and F. Liu, "The inconsistency in rough set based rule generation," Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, vol. 2005/2001, pp. 370–377, 2001.
[10] A. Skowron, and J. Stepanniuk, "Information granules: towards foundations of granular computing," International Journal of Intelligent systems, Vol. 16, pp. 57-85, 2001.
[11] Y.Y. Yao, and N. Zhong, "Potential applications of granular computing in knowledge discovery and data mining," World Multiconference on Systemics, Cybernetics and informatics, pp. 573-580, 1999.
[12] J. An, G. Wang, Y. Wu, and Q. Gan, "A rule generation algorithm based on granular computing," IEEE International Conference on Granular Computing, 2005.
[13] Y.Y. Yao, and N. Zhong, "Potential applications of granular computing in knowledge discovery and data mining," Proceedings of World Multiconference on Systemics, Cybernetics and Informatics, pp. 573-580, 1999.
[14] A. Frank and A. Asuncion, "UCI Machine Learning Repository," http://archive.ics.uci.edu/ml, Irvine, CA: University of California, School of Information and Computer Science, 2010.
[15] Y.Y. Yao, "On Modeling data mining with granular computing", Proceedings of COMPSAC, pp. 638–643, 2001.
[16] "Apache Haoop," http://hadoop.apache.org
[17] A. Bargiela and W. Pedrycz, "The roots of granular computing," Proceedings of IEEE Granular Computing Conference, pp.741, 2006.
[18] W. Pedrycz, "Granular computing: an introduction," IFSA World Congress and 20th NAFIPS International Conference, pp. 1349-1354, 2001.
[19] Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning About Data, Kluwer, Dordrecht, The Netherlands, 1991.
[20] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," Sixth Symposium on Operating System Design and Implementation, 2004.
[21] T. White, "Hadoop: The Definitive Guide.," O’’Reilly Media, Yahoo! Press, 2009
[22] M.Y. Tsai, P.F. Chiang, S.J. Chen, W.J Wang, "A Decision Generation Algorithm based on Granular Computing," IEEE International Conference on Granular Computing, 2012.
[23] "NCHC," http://www.nchc.org.tw
[24] "Formosa3 cloud computing platform," http://formosa3.nchc.org.tw/
[25] "Weka," http://www.cs.waikato.ac.nz/ml/weka/
指導教授 王尉任(Wei-Jen Wang) 審核日期 2012-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明