博碩士論文 100522109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:13.58.18.135
姓名 連捷(Jie Lian)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 H.264/AVC視訊片段增刪之偵測與反偵測
(Detecting and Anti-Detecting Shot Insertion and Deletion in H.264/AVC Videos)
相關論文
★ 基於QT之跨平台無線心率分析系統實現★ 網路電話之額外訊息傳輸機制
★ 針對與運動比賽精彩畫面相關串場效果之偵測★ 植基於向量量化之視訊/影像內容驗證技術
★ 植基於串場效果偵測與內容分析之棒球比賽精華擷取系統★ 以視覺特徵擷取為基礎之影像視訊內容認證技術
★ 使用動態背景補償以偵測與追蹤移動監控畫面之前景物★ 應用於H.264/AVC視訊內容認證之適應式數位浮水印
★ 棒球比賽精華片段擷取分類系統★ 利用H.264/AVC特徵之多攝影機即時追蹤系統
★ 利用隱式型態模式之高速公路前車偵測機制★ 基於時間域與空間域特徵擷取之影片複製偵測機制
★ 結合數位浮水印與興趣區域位元率控制之車行視訊編碼★ 應用於數位智權管理之H.264/AVC視訊加解密暨數位浮水印機制
★ 基於文字與主播偵測之新聞視訊分析系統★ 植基於數位浮水印之H.264/AVC視訊內容驗證機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 影像與視訊處理軟體的普及讓數位資料內容的真實性遭到若干懷疑,近期許多研究試圖偵測多媒體資料是否曾被編輯或竄改,以及相對應的反偵測方式,藉由兩者的交互改進協助提昇多媒體資料的真實性。反偵測技術尋求現有偵測方式的弱點,將編輯後的多媒體資料內可能留下的某種特徵移除以讓偵測失敗。本論文提出利用畫面增刪攻擊而引入的兩種特徵,即異常編碼模式與H.264/AVC整數轉換中的量化係數分佈,實作視訊編輯竄改的反偵測方法。首先,根據連續畫面編碼模式之間的關係,在RDO (Rate Distortion Optimization)中限制不合理數量的畫面內預測模式。接著,使用編碼時的QP (Quantization Parameter)與位元率的關係,預測異常畫面內應有的整數轉換量化係數分佈,再將過多的非零係數逐步調整至預測的目標分佈,即藉由改變重建畫面內容移除可偵測特徵。完成以上步驟之後,將編碼模式與處理後的係數儲存起來,於編碼第二次時複製回去得到反偵測影片。實驗結果顯示,我們的方法成功地掩飾了視訊中的畫面增刪攻擊。論文最後也分別討論了兩個偵測方法,即使用去方塊濾波能量進行偵測,以及使用位元率控制應給定QP之偵測方法。雖然在這些方法中存在了某些限制條件,但是在合適的情況下仍具有值得研究的偵測效果。
摘要(英) Digital multimedia data can be edited easily by the powerful software these days. Therefore, many digital forensic techniques have been developed to authenticate multimedia content. Anti-forensic techniques are also proposed to remove editing traces. These anti-forensic methods study the weaknesses of existing detection algorithms to make editing undetectable. This thesis presents an anti-forensic method employing two features, abnormal coding modes and distribution of quantized transform coefficients, which are generated by the frame/scene adding or deletion. First, the coding modes are examined in the Rate Distortion Optimization (RDO) process to limit the use of intra coding blocks in certain frames. Then, the relationship between QP and rate are examined to predict the reasonable distribution of quantized coefficients. Next, we change the reconstruction content to erase the detection features by adjusting the quantized coefficients according to the predicted distribution. Following the above steps, we store the coding modes and the processed coefficients and then copy them back in the second encoding process. The experimental results show that our scheme can successfully eliminate the features. Finally, we discuss two possible detection methods, deblocking energy and examining QP values in the rate control. The former method detects the forgery by checking the deblocking intensity of the reconstruction frames, and the latter method uses a known rate control mechanism to determine whether a correct QP value is assigned. These methods are effective in certain appropriate conditions and deserve more discussions.
關鍵字(中) ★ H264/AVC
★ 影片竄改偵測
★ 影片竄改反偵測
★ 畫面增刪
★ 影片重壓縮
關鍵字(英) ★ H264/AVC
★ video forensic
★ video anti-forensic
★ frame adding/deletion
★ video transcoding
論文目次 目錄
論文摘要 I
Abstract II
誌謝 III
目錄 IV
附圖目錄 VI
表格目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究貢獻 2
1.3 論文架構 3
第二章 相關研究 4
2.1 畫面增刪攻擊偵測 4
2.1.1 編碼器流程與預測錯誤 4
2.1.2 偵測方法 6
2.2 畫面增刪攻擊反偵測 7
2.2.1 反偵測方法 7
2.2.2 優點與缺點 8
第三章 提出的方法 9
3.1 畫面增刪攻擊特徵 11
3.1.1 預測錯誤週期性 11
3.1.2 異常的編碼模式 12
3.2 特徵移除:預測錯誤週期性 13
3.2.1 預測量化係數分布 13
3.2.2 調整量化係數 18
3.2.3 選擇調整MB與額外處理 19
3.3 特徵移除:異常的編碼模式 22
第四章 其他可能的偵測方法 25
4.1 去方塊濾波能量 25
4.2 位元率控制與給定QP 27
第五章 實驗結果 29
5.1 實驗設定 29
5.2 預測錯誤與DFT轉換結果 30
5.3 偵測強度分析 32
5.4 直方圖相似度與PSNR 35
5.5 編碼模式 37
第六章 結論與未來工作 39
參考文獻 40
參考文獻 [1] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, “Determining image origin and integrity using sensor noise,” IEEE Transactions on Information Forensics Security, vol. 3, no. 1, pp. 74–90, 2008.
[2] Swaminathan, M. Wu, and K. J. R. Liu, “Digital image forensics via intrinsic fingerprints,” IEEE Transactions on Information Forensics Security, vol. 3, no.1, pp. 101–117, 2008.
[3] Avcibas, S. Bayram, N. Memon, M. Ramkumar, and B. Sankur, “A classifier design for detecting image manipulations,” IEEE International Conference on Image Processing, vol. 4, pp. 2645–2648, 2004.
[4] Milani, S., Fontani, M., Bestagini, P., Barni, M., Piva, A., Tagliasacchi, M., and Tubaro, S. , “An overview on video forensics.” APSIPA Transactions on Signal and Information Processing, vol.1, no.1, 2012.
[5] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting double MPEG compression,” Proceedings of the 8th ACM workshop on Multimedia and Security, pp.37-47, 2006.
[6] W. Wang and Farid, H., “Exposing digital forgeries in interlaced and de-interlaced video,” IEEE Transactions on Information Forensics and Security, vol.2, no. 3, pp.438-449, 2007.
[7] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, “Source digital camcorder identification using sensor photo response non-uniformity,” Proceedings of SPIE on Security, Steganography, and Watermarking, vol. 6505, 2007.
[8] C. Kraetzer, A. Oermann, J. Dittmann, and A. Lang, “Digital audio forensics: A first practical evaluation on microphone and environment classification,” Proceedings of 9th ACM Workshop on Multimedia and Security, pp. 63–74, 2007.
[9] D. Garcia-Romero and C. Y. Espy-Wilson, “Automatic acquisition device identification from speech recordings,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1806–1809, 2010.
[10] M. Kirchner and R. Böhme, “Hiding traces of resampling in digital images,” IEEE Transactions on Information Forensics Security, vol.3, no.4, pp. 582–592, 2008.
[11] T. Gloe, M. Kirchner, A. Winkler, and R. Böhme, “Can we trust digital image forensics?,” Proceedings of the15th ACM International Conference on Multimedia, pp.78–86, 2007.
[12] M. C. Stamm, S. K. Tjoa,W. S. Lin, and K. J. R. Liu, “Anti-forensics of JPEG compression,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1694–1697, 2010.
[13] Stamm, M.C. and Liu, K.J.R., “Anti-Forensics for frame deletion/addition in mpeg video,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1876-1879, 2011.
[14] Stamm, M.C., Lin, W.S. and Liu, K.J.R., “Temporal Forensics and Anti-Forensics for Motion Compensated Video,” IEEE Transactions on Information Forensics and Security, vol.7, no.4, pp.1315-1329, 2012.
[15] He, Zhihai, and Dapeng Oliver Wu, “Linear rate control and optimum statistical multiplexing for H. 264 video broadcast,” IEEE Transactions on Multimedia, vol.10, no.7, pp.1237-1249, 2008.
[16] Ma, Siwei, Wen Gao, and Yan Lu, “Rate-distortion analysis for H. 264/AVC video coding and its application to rate control,” IEEE Transactions on Circuits and Systems for Video Technology, vol.15, no.12, pp. 1533-1544, 2005.
[17] Tel, Till Halbach., “Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q. 6).”
[18] JM.18 Reference Software. [Online]. Available: http://iphome.hhi.de/suehring/tml/download/.
[19] Gabarda, Salvador, and Gabriel Cristóbal., “Blind image quality assessment through anisotropy,” The Journal of the Optical Society of America A, vol.24, no.12, pp.42-51, 2007.
指導教授 蘇柏齊(Po-chyi Su) 審核日期 2013-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明