參考文獻 |
Ahn, C. M. and H. E. Thompson (1988). Jump-diffusion processes and the term structure of interest rates. Journal of Finance 43(1), 155-174.
Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Review of Financial Studies 9(1), 69-107.
Broadie, M. and P. Glasserman (1996). Estimating security price derivatives using simulation. Management Science 42(2), 269-285.
Chan, J. and M. Joshi (2013). Fast Monte-Carlo Greeks for nancial products with discontinuous payoffs. Mathematical Finance 23(3), 459-495.
Chen, Z. and P. Glasserman (2008). Sensitivity estimates for portfolio credit derivatives using monte carlo. Finance and Stochastics 12, 507-540.
Cont, R. and E. Voltchkova (2005). A nite difference scheme for option pricing in jump diffusion and exponential Levy models. SIAM Journal on Numerical Analysis 43(4), 1596-1626.
Dai, T. S., C. J. Wang, Y. D. Lyuu, and Y. C. Liu (2010). An efficient and accurate lattice for pricing derivative under a jump-diffusion process. Applied Mathematics and Computation 217(7), 3174-3189.
Davis, M. H. and M. P. Johansson (2006). Malliavin Monte Carlo Greeks for jump diffusions. Stochastic Processes and Their Applications 116(1), 101-129.
Debelley, V. and N. Privault (2004). Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space. preprint.
Duffie, D. and D. Lando (2001). Term structures of credit spreads with incomplete accounting information. Econometrica 69(3), 633-664.
Eraker, B., M. Johannes, and N. Polson (2003). The impact of jumps in volatility and returns. Journal of Finance 58, 1269-1300.
Fries, C. P. (2007). Localized proxy simulation schemes for generic and robust Monte-Carlo Greeks. Available at SSRN 984744.
Fries, C. P. and M. S. Joshi (2008). Partial proxy simulation schemes for generic and robust Monte-Carlo Greeks. Computational Finance 11(3), 79-106.
Fries, C. P. and J. Kampen (2005). Proxy simulation schmes for generic and robust Monte-Carlo sensitivities and high accuracy drift approximation with applications to the LIBOR
Market Model.
Fries, C. P. and J. Kampen (2006). Proxy simulation schemes for generic robust Monte-Carlo sensitivities, process oriented importance sampling and high accuracy drift approximation. The Jornal of Computational Finance 10(2), 97-128.
Fu, M. C. (2007). Variance-Gamma and Monte Carlo. In M. Fu, R. Jarrow, J.-Y. Yen, and R. Elliott (Eds.), Advances in Mathematical Finance, pp. 21-34. Boston: Birkhauser.
Fuh, C. D., H. W. Teng, and R. H. Wang (2013). Optimal importance sampling for rare event simulation with applications. Technical report, National Central University, Taoyuan, Taiwan.
Glasserman, P. and Z. Liu (2010). Estimating Greeks in simulating Levy-driven models. Computational Finance 14(2), 3-56.
Gourieroux, C., J. P. Laurent, and O. Scaillet (2000). Sensitivity analysis of Values at Risk. Journal of Empirical Finance 7(3-4), 225-245.
Heidergott, B. and H. Leahu (2010). Weak differentiability of product measures. Mathematics of Operations Research 35(1), 27-51.
Hong, L. and G. Liu (2011). Kernel estimation of the Greeks for options with discounted payoffs. Operations Research 59(1), 96-108.
Kawai, R. and A. Takeuchi (2011). Greeks formulas for an asset price model with gamma processes. Mathematical Finance 21(4), 723-742.
Kienitz, J. (2008). A note on Monte Carlo Greeks for jump diffusion and other Levy model.
Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science 48(8), 1086-1101.
Li, D. (2000). On default correlation: A copula function approach. Fixed Income 9, 43-54.
Lieb, E. H. and M. Loss (2001). Analysis (4 ed.), Volume 14. Providence, Rhode Island: American Mathematical Society.
Lyuu, Y.-D. and H.-W. Teng (2011). Unbiased and efficient Greeks of nancial options. Finance and Stochastics 15(1), 141-181.
Madan, D. B., P. P. Carr, and E. C. Chang (1998). The variance gamma process and option
pricing. European Finance Review 2, 79-105.
Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics 63, 3-50.
Runggaldier, W. J. (2003). Jump-diffusion models. Handbook of heavy tailed distributions in fi nance 1, 169-209. Book.
Teng, H. W., M. H. Kang, and C. D. Fuh (2013). On spherical Monte Carlo simulations for multivariate normal probabilities. Technical report, National Central University, Taoyuan, Taiwan.
Thoma, P. (2012). Efficient calculation of the Greeks: An application of measure valued differentiation. Ph. D. thesis, Universitat Wien.
Zheng, H. and L. Liang (2009). Basket CDS pricing with interacting intensities. Finance and Stochastics 13(3), 445-469.
Zhou, C. (2001). The term structure of credit spreads with jump risk. Banking and Finance 25(11), 2015-2040.
|