博碩士論文 101322040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.137.41.2
姓名 胡天騏(Tian-Chi Hu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 部分飽和砂岩滑動與破壞之波動特性
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用改良式直接剪力試驗儀,進行砂岩試體之摩擦試驗及剪力強度試驗,在不同試驗條件下,配合不同之正向應力進行剪動,並利用加速度計及微音器量測砂岩在試驗中所產生之振波與音波訊號。將試驗結果利用頻譜比對法分析,可得本試驗所用岩石試體之加速度顯著頻率為1~16Hz,而音波之顯著頻率為10~15Hz,兩者皆屬低頻範圍而有密切之關係,且皆不受粗糙條件、正向應力及岩層間之裂縫是否有水而有所影響。根據不同粗糙條件下岩石摩擦試驗之破壞包絡線與降伏線,可得知在乾燥情況下降伏狀態與破壞狀態之摩擦比的範圍介於0.75~0.82;在濕潤情況下降伏狀態與破壞狀態之摩擦比的範圍介於0.79~0.83,此結果說明了濕潤情況下岩層達到降伏狀態的時間較晚,且達到降伏狀態後岩層抵抗滑動破壞的能力也較差。另外,根據岩石摩擦試驗之音壓、加速度、剪動位移及摩擦應力歷時圖可發現,當摩擦應力接近降伏摩擦應力時,所產生之位移雖較不明顯,但此刻之加速度與音壓卻有小幅驟升之趨勢,測得此訊號代表岩層已達降伏狀態,至於剪力強度則只能測得破壞時之訊號而無降伏狀態之訊號。一般而言,岩層滑動破壞通常包含局部之岩塊剪動與整個弱面的滑動,善加利用二者所發出之訊號,應可做好岩石邊坡滑動之預警工作。
摘要(英) This research used sandstone specimens to perform a series of friction tests and shear tests under various experimental conditions by modified direct shear apparatus. In the tests, the data of vibration waves and sound waves was measured by accelerometer and microphone. According to the results of experiments, the apparent frequency of acceleration of the rock specimens used in this research is 1-16 Hz and the apparent frequency of sound waves is 10-15 Hz. Both of these apparent frequencies were found in the low area of frequency. Moreover, conditions of roughness, normal stress and the amount of water filled in the cracks of rock would not affect the apparent frequency. According to the failure envelope and yielding line of friction tests, it is recognized that the range of friction ratio between yield and failure under dry condition is 0.75-0.82. However, its range for the wet condition is 0.79-0.83. This showed that the wet rock will reach the yielding state later than dry rock and the sliding resist is weak also. Besides, according to the figures of sound pressure, acceleration, shearing displacement and frictional stress with the elapsed time obtained from the friction tests of rock, it is recognized that although the slide displacement occurred in the experiments is not apparent, the acceleration and the sound pressure increased slightly at the beginning of yielding. These signals show that the rock has reached yielding state. However, for the shear of rock, it has no apparent signals for yielding, and only offers some significant signals at failure. The combination of these information measured from rock slope may be used as an early warning.
關鍵字(中) ★ 木山層砂岩
★ 直剪試驗
★ 加速度
★ 音波
★ 顯著頻率
關鍵字(英) ★ Mushan sandstone
★ direct shear test
★ acceleration
★ sound wave
★ apparent frequency
論文目次 摘要I
AbstractII
目錄III
照片目錄VIII
表目錄X
圖目錄XI
符號說明XIX
第一章 緒論1
1.1 研究動機與目的1
1.2 研究方法1
1.3 論文內容2
第二章 文獻回顧3
2.1 振波加速度與音波之特性3
2.1.1 振波加速度特性3
2.1.2 音波特性6
2.1.3 土層中振波衰減特性7
2.1.4 空氣中音波衰減特性9
2.1.5 共振現象10
2.1.6 音射現象10
2.2 振波加速度與音波訊號分析12
2.2.1 振波加速度參數12
2.2.2 音波參數14
2.2.3 時間域分析16
2.2.4 頻率域分析17
2.2.5 背景噪音之濾除18
2.3 振波加速度與音波之應用19
2.3.1 土壤中音波之研究19
2.3.2 岩石中音波之研究20
2.3.3 混凝土塊受壓之音波研究21
2.3.4 土石流地聲特性之研究22
2.3.5 振動加速度之研究23
2.3.6 乾燥砂土中音波及振波之傳遞特性25
2.3.7 岩石摩擦之音波量測與應用25
2.3.8 人工岩體受剪變形之音波特性26
2.3.9 礫石受剪之音波與振波特性26
2.3.10 部分飽和砂土受剪波動及剪力強度特性27
2.4 邊坡滑動之預警27
2.4.1 邊坡監測儀器28
2.4.2 邊坡預警方法29
第三章 試驗儀器與試驗方法64
3.1 試驗試體製作64
3.1.1 摩擦試驗之試體製作64
3.1.2 剪力強度試驗之試體製作65
3.2 試驗材料之基本力學性質66
3.3 試驗儀器與相關設備66
3.3.1 波傳量測系統66
3.3.2 改良式直接剪力試驗儀69
3.3.3 量測系統設備71
3.4 試驗方法及步驟73
3.4.1 摩擦試驗之試驗步驟73
3.4.2 剪力強度試驗之試驗步驟75
3.5 波傳訊號之處理75
3.5.1 傅立葉轉換75
3.5.2 取樣定理77
第四章 試驗結果與分析98
4.1 砂岩之摩擦與剪力強度特性98
4.1.1 砂岩在乾燥情況下摩擦試驗之強度特性98
4.1.2 砂岩在乾燥情況下剪力強度試驗之強度特性99
4.1.3 砂岩在濕潤情況下摩擦試驗之強度特性100
4.1.4 砂岩在濕潤情況下剪力強度試驗之強度特性101
4.2 砂岩之剪動變形特性101
4.2.1 砂岩在乾燥情況下摩擦試驗之剪動變形特性101
4.2.2 砂岩在乾燥情況下剪力強度試驗之剪動變形特性102
4.2.3 砂岩在濕潤情況下摩擦試驗之剪動變形特性103
4.2.4 砂岩在濕潤情況下剪力強度試驗之剪動變形特性103
4.3 振波與音波訊號處理103
4.3.1 乾燥情況下摩擦試驗之音波訊號分析104
4.3.2 乾燥情況下剪力強度試驗之音波訊號分析106
4.3.3 乾燥情況下摩擦試驗之振波訊號分析107
4.3.4 乾燥情況下剪力強度試驗之振波訊號分析108
4.3.5 濕潤情況下摩擦之振波訊號分析109
4.3.6 濕潤情況下剪力強度之振波訊號分析109
4.4 防災應用110
第五章 結論與建議156
5.1 結論156
5.2 建議157
參考文獻158

參考文獻 1. 王柏村,「振動知多少」,科學發展,第四百一十三期,第46-52頁(2007)。
2. 王奕閔,「以行為模型建立二階三角積分調變器之非理想現象的研究」,碩士論文,國立中央大學電機工程研究所,中壢 (2006)。
3. 王偉輝、劉德源、鄭傑元、盧威宇、許錦海、林意勝、劉家誌、杜堅瑋
郭鍠輝、莊雅雯,「高速鐵路噪音振動之研究」,行政院環保署委託計畫,中華民國振動與噪音工程學會辦理(2003)。
4. 田坤國、李俊億、馬經文、黃文駿,「南部軟岩區國道邊坡穩定監測與預警研究(III)」,南部軟岩區邊坡穩定工法研究成果發表會論文集,第71~84頁 (2003)。
5. 行政院環保署,噪音原理防制材料簡介手冊 (2010)。
6. 行政院農業委員會水土保持局,梨山地區地層滑動整治計畫 (2002)。
7. 交通部中央氣象局,地震百問,台北(2003)。
8. 吳卓岡,「台北盆地地盤放大特性之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2001)。
9. 吳志鴻,「淺層砂土中音波傳遞特性之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2006)。
10. 吳銘德、周丹,「探測岩石破裂的聲音以確定人工裂縫的方法」,國外測井技術,第八卷,第六期,第19-22頁 (1993)。
11. 呂盈慧,「大地材料受剪時之音波與振波特性」,碩士論文,國立中央大學土木工程學系,中壢 (2011)。
12. 李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
13. 李豐博、黃安斌、饒正、蔡東霖、李瑞庭,「全光纖式邊坡穩定監測系統整合與現地應用測試」,交通部運輸研究所港灣技術研究中心,台中(2008)。
14. 林秀樺,「岩石摩擦之音波量測與應用」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
15. 姚長安,「雷射監測系統自動通報適用性評估與地滑應用」,碩士論文,中原大學土木工程學系,中壢 (2005)。
16. 施國欽,岩石力學-大地工程學(四),文笙書局,台北(2004)。
17. 張惠文、陳柏翰、李嶸泰、胡天騏,「礫石受剪之音波與振及其防災應用」,災害防救科技與管理學刊,第二卷,第二期,第55-77頁(2013)。
18. 張哲胤,「乾燥砂土中音波及振波之傳遞特性」,碩士論文,國立中央大學土木工程學系,中壢 (2007)。
19. 陳俊誠,「以LabVIEW軟體開發虛擬頻譜分析儀」,碩士論文,國立中央大學機械工程學系,中壢 (2009)。
20. 陳柏翰,「礫石受剪時之音波與振波特性」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
21. 湯士弘、林志平、鐘志忠,「時域反射技術應用於邊坡監測—成效與問題」,台灣公共工程學刊,第二卷,第一期,第49-55頁 (2006)。
22. 黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之實驗」,中華水土保持學報,第三十六卷,第一期,第39-53頁 (2005)。
23. 黃清哲、孫坤池、陳潮億、尹孝元,「不同型態土石流地聲特性之實驗研究」,中華水土保持學報,第三十八卷,第四期,第417-430頁 (2007)。
24. 葉致翔,「TDR邊坡資訊自動化監測系統」,碩士論文,國立交通大學土木工程學系,新竹 (2003)。
25. 楊嘉瑜,「部分飽和砂土受剪波動及剪力強度特性的研究」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
26. 廖洪鈞、廖瑞堂,「坡地社區開發安全監測手冊」,內政部營建署營建自動化專業技術報告(1999)。
27. 劉建忠,「應用HHT方法在偵測建築結構樓層損傷程度之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2012)。
28. 蕭年宏,「砂土受剪時音波與振波之傳遞探討」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
29. 謝榮宗,「雷射自動監測預警系統之研究」,第十一屆大地工程學術研討會,台北,第G25-1~G25-10頁 (2005)。
30. 薛景壕,「人工岩體受剪變形之特性」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
31. 蘇德勝,噪音原理及控制,臺隆書店,台北 (2003)。
32. 鹽田正純,公害振動的預測手冊,景上書局,日本 (1985)。
33. Barton, N.R. and Choubey, V., “The shear strength of rock joints in theory and practice,” Rock Mechanics, Vol. 10, No. 1, pp. 1-54 (1977).
34. Bieniawski, Z.T., “Mechanism of brittle fracture of rock,” Int.J, Rock Mechanics, Min, Sci, Vol. 4, No. 4, pp. 407-423 (1967).
35. Bieniawski, Z.T., Franklin, J.A., Bernede, M.J., Duffaut, P., Rummel, F., Horibe, T., Broch, E., Rodrugues, E., Van Heerden, W.L., Vogler, U.W., Hansagi, I., Szlavin, J., Brady, B.T., Deere, D.U., Hawkes, I., and Milovanovic, D., “Suggested method for determining the uniaxial compressive strength and deformability of rock materials,” International society for rock mechanics, Vol. 16, No. 2, pp. 135-140 (1979).
36. Bray, D.E., and McBride, D., “Acoustic Emission Technology,” Nondestructive Testing Techniques, New York, pp. 345-377, John Wiley & Sons Inc. (1992).
37. Goodman, R.E., “Subaudible noise during compression of rock,” Geological Society of America, Bulletin, Vol. 74, No. 4, pp. 90-487 (1963).
38. Gutowski, T.G., and Dym, C.L., “Propagation of Ground Vibration: A Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
39. Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
40. Itakura, Y., Taniguchi, S., Miyamoto, K., and Shimokawa, E., “Acoustic sensor for detecting the occurrence of debris flows,” Variability in Stream Erosion and Sediment Transport (1994).
41. Itakura, Y., Kamei, N., Takahama, J.I., and Nowa, Y., “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements-Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131 (1997).
42. Itakura, Y., Kamei, N., Takahama, J.I., and Nowa, Y., “Acoustic detection sensor of Debris flow,” The First Internation Conference on Debris-Flow Hazards Mitigation:Mechanics, Prediction, and , Finland, Vol. XA, pp. 127-131 (1997).
43. John M. Cimbala, “Fourier Transforms, DFTs, and FFTs,” Penn State University Latest revision (2010).
44. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 2, pp. 115-126 (2000).
45. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
46. Koerner, R.M., McCabe, W.M., and Lord, A.E., “Acoustic emission behavior and monitoring of soils,” Acoustic Emissions in Geotechnical Engineering Practices, ASTM STP 750, pp. 93-141 (1981).
47. Koerner, R.M., McCabe, W.M., and Lord, A.E., “Overview of acoustic emission monitoring of rock structures,” Rock Mechanics, Vol. 14, pp. 27-35 (1981).
48. Matthews, J.R., and Hay, D.R., “Acoustic Emission,” Nondestructive Testing Monographs and Tracts, Vol. 2, pp. 1-14 (1983).
49. Miller, R.K., and P. McIntire, “Nondestructive Testing Handbook: Vol.5 Acoustic Emission Testing,” 2nd Edition, American Society for Nondestructive Testing, pp. 603 (1987).
50. Mogi, K., “Magnitude frequency relation of microfracturing in rock and its relation to earthquakes,” Bull Earthquake Res Inst, Vol. 40, pp. 831-853 (1964).
51. Okuda, S., Okunishi, K., and Suwa, H., “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130 (1980).
52. Ranjith, P.G., Fourar, M., Pong, S.F., Chian, W., and Haque, A., “Characterisation of fractured rocks under uniaxial loading states,” Int.J, Rock Mech, Min, Sci, Vol. 41, pp. 361-366 (2004).
53. Ranjith, P.G., Jasinge, D., Song, J.Y., and Choi S.K., “A study of the effect of displacement rate and moisture content on the mechanical properties of concrete:Use of acoustic emission,” Mechanics of Materials, Vol. 40, pp. 453-569 (2008).
54. Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
55. Ronnie, K.M., and McIntire,P., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
56. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
57. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
指導教授 張惠文(Huei-Wen Chang) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明