博碩士論文 101322071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.140.198.201
姓名 吳忠霖(Chung-lin Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考量時間帶變動下航空公司飛航排程暨班次表建立之研究
相關論文
★ 橋梁檢測人力機具排班最佳化之研究★ 勤業務專責分工下消防人員每日勤務排班最佳模式之研究
★ 司機員排班作業最佳化模式之研究★ 科學園區廢水場實驗室檢驗員任務指派 最佳化模式之研究
★ 倉儲地坪粉光工程之最佳化模式研究★ 生下水道工程工作井佈設作業機組指派最佳化之研究
★ 急診室臨時性短期護理人力 指派最佳化之探討★ 專案監造人力調派最佳化模式研究
★ 地質鑽探工程人機作業管理最佳化研究★ 職業棒球球隊球員組合最佳化之研究
★ 鑽堡於卵礫石層施作機具調派最佳化模式之研究★ 職業安全衛生查核人員人力指派最佳化研究
★ 救災機具預置最佳化之探討★ 水電工程出工數最佳化之研究
★ 石門水庫服務台及票站人員排班最佳化之研究★ 空調附屬設備機組維護保養排程最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 飛航排程對航空業者營運影響甚鉅,而良好的飛航排程,除考量航空公司本身的機隊供給、相關作業措施、實務上的限制及旅客的反應,更重要的是航空公司是否取得理想之時間帶。本研究以航空業者立場,在給定的營運資料下,包括機隊規模、機場額度、相關飛航成本等,以營運利潤最大化為目標,構建一考量時間帶分配及變動需求之短期飛航排程模式。若航空公司希望透過次要時間帶交易改善現有之飛航排程表,該模式將會分析其租用時間帶及交換的時間帶是否會為航空公司帶來利潤,並輸出新的飛航排程表及航空公司之利潤,提供航空業者一短期排程暨班次表建立之輔助規劃工具。
本研究利用網路流動技巧構建模式,此模式包含機流網路與多重人流網路。在機流網路的設計上,假設時間帶分佈位置為已知,並以整數流動方式定式機隊於時空中的排程。在人流網路中,為考量等待旅客在實務中的流失情況,本研究加入旅客選擇模式以定式此一旅客流動問題,並於二網路流動間加上實務限制,以符合實際的飛航作業。該模式為一非線性混合整數規劃問題,其屬於NP-hard性質的問題,在求解上更難於以往傳統之飛航排程規劃問題。為有效求解大規模問題,因而本研究發展一反覆求解架構,以重複修正該航空公司的市場分配需求,並配合求解固定性需求之短期飛航排程問題,以求解模式。最後本研究參考某國各機場與該國各航空公司之國內線相關營運資料為例,進行測試分析,結果顯示本研究所提出考量時間帶變動下之短期飛航排程模式及求解演算法的效果甚佳。
摘要(英) Fleet routing and flight scheduling are important in the field of airline operations. In order to create a brilliant flight schedule for an airline, the fleet and its supply, related operating requirements, restrictions on practice, and customers’ response on its service should be taken into account. Last but not least, the most important part is that airline could acquire the ideal slots in the airport or not. In this paper, based on the airline’s perspective, given the operating data, including fleet size, airport flight quota, and related flight cost, the objective is to maximize the operating profit and build a short-term flight scheduling model with slot allocation and variable demands. If the airline wants to improve the flight schedule with secondary slot trading, this model would analyze whether the rented slots or the swapped slots would be profitable for airlines. New flight schedule and the profit for the airline would be displayed within this model. The model will also provide assistance in planning to construct their short-term flight schedules and timetables for airlines.
This paper employed network flow techniques to construct the model which includes fleet flow network and multiple passengers network. For fleet flow network design, it is assumed that time slot location has been known, and we applied integer flow networks to formulate the aircraft routes in terms of time and space. In the passenger flow networks, considering the loss of waiting passengers in real case, this paper introduced a passenger choice model to formulate passenger flows. Constraints between the fleet flow and passenger flow network were considered to fulfill the real operating requirements. The model is a mixed integer non-linear programming problem that is characterized as a NP-hard problem and is more difficult to be solved than traditional flight scheduling problems that are often formulated as integer linear programs. To solve the model with practical size problems efficiently, we developed an iterative solution framework which will repeatedly modify the target airline market share in iteration and solve a fixed-demand flight scheduling problem. We used certain country of airports data and related operating data of domestic passenger transportation from some airlines to analyze. The test results show this model that to be effective and that the solution method could be useful in practice.
關鍵字(中) ★ 時間帶
★ 飛航排程
★ 變動需求
★ 旅客選擇模式
★ 非線性混合整數規劃問題
★ 次要市場交易
關鍵字(英) ★ time slot
★ fleet routing
★ variable demand
★ passenger choice model
★ nonlinear mixed integer program
★ secondary trading
論文目次 摘要 i
Abstract ii
致謝 vi
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 2
1.3 研究方法與流程 3
第二章 文獻回顧 4
2.1 時間帶定義及制度相關文獻 4
2.2 時間帶分配相關文獻 6
2.3 旅客需求模式相關文獻 10
2.4 飛航排程問題相關文獻 14
2.5 小結 19
第三章 模式建構 20
3.1 模式架構 20
3.1.1 模式假設 20
3.1.2 機流時空網路 23
3.1.3 人流時空網路 26
3.1.4 旅客選擇模式 28
3.2 問題定式 32
3.2.1 數學定式 32
3.3 小結 36
第四章 模式求解 37
4.1 求解架構 37
4.2 模式求解步驟 38
4.3 整體程式求解 40
4.4 人流流量推擠 40
4.5 單機定線 41
4.6 下限解求解方式 42
4.7 範例測試 43
4.8 小結 49
第五章 實例測試 50
5.1 資料輸入 50
5.1.1 航線資料 51
5.1.2 規劃草擬班表及各航線競爭航空公司班表 51
5.1.3 旅客起迄資料 52
5.1.4 機場額度限制 53
5.1.5 機場時間帶資料 54
5.1.6 航機種類及機隊規模 56
5.1.7 成本資料 56
5.1.8 票價資料 58
5.1.9 旅客選擇模式參數資料 58
5.2 輸出資料 59
5.3 敏感度分析 64
5.3.1 機隊規模 64
5.3.2 旅次量敏感度分析 65
5.3.3 時間帶限制數量敏感度分析 65
5.3.4 旅客考慮時間敏感度分析 66
5.3.5 票價敏感度分析 69
5.3.6 租用時間帶價格敏感度分析 70
5.3.7 可用時間帶數量敏感度分析 70
5.3.8 交換時間帶數量敏感度分析 73
5.4 方案分析 75
5.5 小結 76
第六章 結論與建議 77
6.1 結論 77
6.2 建議 78
6.3 貢獻 80
參考文獻 81
附錄 85
求解結果及敏感度分析結果 85
參考文獻 1. 朱純孝,「考慮旅客偏好下航空公司班表與票價訂定之研究」,碩士論文,成功大學交通運輸管理系,台南(1999)。
2. 李穗玲,「機場跑道容量推估與延誤分析模式之研究」,博士論文,國立交通大學交通運輸研究所,新竹(2001)。
3. 呂錦隆,「國內航空客運旅客選擇決策之實證研究」,博士論文,成功大學交通管理科學研究所,台南(1999)。
4. 巫永隆,「航空公司在直飛與轉機航班下之競爭賽局」,運輸計劃季刊,第二十九卷,第四期,頁739~760(2000)。
5. 邱心玫,「航空公司之客貨航班時間帶調整規劃之研究」,碩士論文,國立交通大學運輸科技與管理學系, 新竹(2004)。
6. 柯玉芳,「考慮社會效益的機場跑道時間帶數目分配模式」,碩士論文,國立台灣海洋大學航運管理學系,基隆(2001)。
7. 顏上堯、翁綵穗,「季節轉換間緩衝期飛航排程之研究」,運輸計劃季刊,卷期:30,頁次:頁891-922 (2001)。
8. 溫裕弘,「競爭狀態下考慮供需互動之航空網路設計」,第九屆校際運輸學術聯誼會研討會,新竹,第39-56頁(2001)。
9. 管宇同,「考量競爭行為下航空公司班表規劃之研究」,中華民國運輸學會101年年會暨學術論文國際研討會,台南 (2012)。
10. 蔣文育,梁金樹,余坤東,「應用Logit Model於航空市場之消費行為研究」,東吳經濟商學學報,卷期:48,頁57-71 (2005)。
11. 蔡沛圻,「國內線機場起降時間帶分配之研究」,碩士論文,國立交通大學交通運輸研究所, 新竹(1997)。
12. 劉得昌,「國內航線旅次需求型態推估與班次起飛時間之訂定」,博士論文,國立交通大學交通運輸研究,新竹(2000)。
13. Avenali, A., D’Alfonso, T., Leporelli, C., Matteucci, G., Nastasi, A., Reverberi, P., “A supervised market mechanism for efficient airport slot allocation,” Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University of Rome, Italy, (2014).
14. Babic, D., Kalic, M., “Modelling the estimation of the airline profit in case of purchasing new slots for increasing flight frequency,” Procedia - Social and Behavioral Sciences, Vol. 20, pp. 1069-1079 (2011).
15. Babic, D., Kalic, M., “Airline route network expansion: Modelling the benefits of slot purchases,” Journal of Air Transport Management, Vol. 23, pp. 25-30 (2012).
16. Cao, J, M., Kanafani, A., “The value of runway time slots for airlines,” European Journal of Operational Research, Vol. 126, pp. 491-500 (2000).
17. Condorelli, D., “Efficient and Equitable Airport Slot Allocation,” Rivista di Politica Economica, pp. 81-104 (2007).
18. Dobson, G., Lederer, P, J., “Airline scheduling and routing in a hub-and-spoke system,” Transportation Science, Vol. 27, No. 3, pp. 281-297 (1993).
19. Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M, M., Soumis, F., “Daily aircraft routing and scheduling,” Management Science, Vol. 43, pp. 841-855 (1997).
20. De Wit, J., Burghouwt, G., “Slot allocation and use at hub airports, perspectives for secondary trading,” European Journal of Transport and Infrastructure Research, Vol. 8, pp. 147-163 (2008).
21. Fukui, H., “An empirical analysis of airport slot trading in the United States,” Transportation Research Part B, Vol. 44, pp. 330-357 (2010).
22. Gillen, D., “Slot Trading in North America,” Sauder School of Business, University of British Columbia, Canada (2006).
23. Hansen, M., “Airline Competition in a Hub-Dominated environment: an application of noncooperative game theory,” Transportation Research Part B, Vol. 24B, No. 1, pp. 27-43 (1990).
24. Kanafani, A., “Aircraft technology and network structure in short-haul air transportation,” Transportation Research Part A, Vol.15, pp. 305-314 (1981).
25. Le, L., Donohue, G., Chen, C, H., “Auction-Based Slot Allocation for Traffic Demand Management at Hartsfield Atlanta International Airport: A Case Study,” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1888, pp. 50-58 (2004).
26. Mashford, J, S., Marksjö, B, S., “Airline Base Schedule Optimisation by Flight Network Annealing,” Annals of Operations Research, Vol. 108, pp. 293-313 (2001).
27. Ozdemir, Y., Basligil, H. Sarsenov, B., “A Large Scale Integer Linear Programming to the Daily Fleet Assignment Problem: A Case Study in Turkey,” Procedia - Social and Behavioral Sciences, Vol. 62, pp. 849–853 (2012).
28. Proussalohlou, K., Koppelman, F., “Air carrier demand -An analysis of market share determinants,” Transportation, Vol.22, pp. 371-388 (1995).
29. Proussaloglou, K., Koppelman, F., “The choice of air carrier, flight and fare class,” Journal of Air Transport Management, Vol. 5, No.4, pp. 193-201 (1999).
30. Pellegrini, P., Castelli, L., Pesenti, R., “Secondary trading of airport slots as a combinatorial exchange,” Transportation Research Part E, Vol. 48, pp. 1009-1022 (2012).
31. Pellegrini, P., Castelli, L., Pesenti, R., “Metaheuristic algorithms for the simultaneous slot allocation problem,” IET Intelligent Transport Systems, Vol. 6, pp. 453-462 (2012).
32. Pita, J, P., Barnhart, C., Antunes, A, P., “Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion,” Transportation Science, Vol. 47, pp. 477-492 (2013).
33. Stojković, G., Soumis, F., Desrosiers, J., Marius M. Solomon., “An optimization model for a real-time flight scheduling problem,” Transportation Research Part A, Vol. 36, pp. 779-788 (2002).
34. Teodorovic, D., Krcmar-Nozic, E., “Multicriteria Model to Determine Flight Frequencies on an Airline Network under Competitive Conditions,” Transportation Science, Vol. 23, No. 1, pp. 14-25(1989).
35. Tang, C, H., Yan, S, Y., Chen, Y, H., “An Integrated Model and Solution Algorithms for Passenger, Cargo, and Combi flight scheduling,” Transportation Research Part E, Vol. 44, pp. 1004-1024 (2008).
36. Warburg, V., Hansen, T, G., Larsen, A., Norman, H., Andersson, E., “Dynamic airline scheduling: An analysis of the potentials of refleeting and retiming,” Journal of Air Transport Management, Vol. 14, pp. 163-167 (2008).
37. Yan, S, Y., Young, H, F., “A Decision Support Framework for Multi-Fleet Routing and Multi-Stop Flight Scheduling,” Transportation Research, Vol. 30A, pp. 379-398 (1996).
38. Yan, S, Y., Ho, S, P., Yang, T, H., “An Integrated Model for Fleet Routing, Flight Scheduling and Aircraft Rental Planning,” Journal of Chinese Institute of Industrial Engineers, Vol. 14, pp. 247-256 (1997).
39. Yan, S, Y., Tseng, C, H., “A Passenger Demand Based Model for Airline Flight Scheduling and Fleet Routing,” Computers and Operations Research, Vol. 29, pp. 1559–1581 (2002).
40. Yan, S, Y., Chen, S, C., Chen, C, H., “Air Cargo Fleet Routing and Timetable Setting with Multiple On-Time Demands,” Transportation Research Part E, Vol. 42, pp. 409–430 (2006).
41. Yan, S, Y., Tang, C, H., Lee, M, C., “A Flight Scheduling Model for Taiwan Airlines under Market Competitions,” Omega - The International Journal of Management Science, Vol. 35, pp. 61-74 (2007).
42. Yan, S, Y., Tang, C, H., Fu, T, C., “An airline scheduling model and solution algorithms under stochastic demands,” European Journal of Operational Research, Vol. 190, pp. 22-39 (2008).
43. Yan, S, Y., Chen, C, H., “Optimal flight scheduling models for cargo airlines under alliances,” Journal of Scheduling, Vol. 11, pp. 175-186 (2008).
44. Zografos, K, G., Salouras, Y., Madas, M, A., “Dealing with the efficient allocation of scarce resources at congested airports,” Transportation Research Part C: Emerging Technologies, Vol. 21, pp. 244-256 (2012).
指導教授 顏上堯(Shang-yao Yan) 審核日期 2014-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明