![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:3.22.41.47
姓名 柯皓之(Hao-chih Ko) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 最佳化卡車動態地磅配置之研究 相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 卡車的是很常見的陸運方式,許多的卡車業者會以超載,來增加單次的運量,降低其成本,與節省時間。但是卡車的超載行為,會產生許多的負面成本,卻是由道路的使用者一起負擔,卡車的超載,不只會對道路的結構、鋪面造成損壞,也會增加道路的維護成本,在行駛的途中排放更多的廢棄,造成環境汙染,但是卡車卻不用因此付出更多的成本,因此交通管理單位必須透過法規,積極的取締超載的卡車,而為了攔截超重卡車,故有設置地磅之需要。由於動態地磅(Weigh-In-Motion, WIM)成本很高,因此在有限的預算下,其選址就顯得格外重要。
本研究利用數學規劃方法與網路流動技巧,透過雙層規劃模型模擬道路管理單位與超重卡車之間的交互關係,即在配置完卡車動態地磅之位置後,超重卡車會去閃避檢查站,而在現實中,卡車動態地磅之位置不可能一直改變因應超重卡車之各種路線,因此如果能在程式中最佳化其配置,直接取求得之結果當作最後的決策,道路管理單位就可以將卡車動態地磅裝設在效益最高之路段上。本研究之目的即為在道路管理單位之角度,求卡車對道路與環境之破壞最小化。本研究以雙層規劃數學模式,建構道路管理單位與超重卡車之間的交互關係,為進行多階段之上下層求解,本研究結合數學規劃套裝軟體CPLEX,發展一啟發解法。最後為評估本演算法之實用績效,以模擬之內華達州路網,並使用k-shortest path模式求出之解與啟發解法進行比較,最後針對不同參數進行方案分析與敏感度分析,結果顯示本研究之演算法可改善 k-shortest path模式之不足,且求解效率甚佳。
摘要(英) Trucks are one common kind of vehicles for land transportation. In order to reduce costs and save time, many truck drivers would expand the one-time amount of cargo by overloads. Overweight trucks, however, incur numerous negative costs shared with other road users. The overloads not only cause damage to the road structure and pavements, but also increase costs of road maintenance. Overweight trucks emit much more exhaust that pollutes the environment without paying the price. Therefore, the authority of traffic administration has to aggressively capture overweight trucks at law. To capture overweight trucks, Weigh-In-Motion of trucks is required. As the cost of WIM (Weigh-In-Motion) is high, site selection becomes particularly important on a limited budget.
This study applies mathematical programming method as well as network flow techniques and simulates the interaction between the authority of road administration and overweight trucks in the use of Bi-Level mathematical programming method, in which overweight trucks would avoid the check point after arranging the site of WIM. In reality, the site of WIM could not be constantly changed to cater to every route overweight trucks take. Accordingly, if we can optimize the location by the program and use the result as final decision, the authority of road administration can install WIM on the most effective road. This study aims to minimize the damage due to overweight trucks from the authority’s point of view. This study utilizes Bi-Level mathematical programming method to establish the interaction between the authority of road administration and overweight trucks. To simulate multi-phased upper and lower layer solution, this study also develop a heuristic solution algorithm in coordination with mathematical programming software package CPLEX; to evaluate the practical performance of this algorithm, this study imitates Nevada network and compares the solution given by k-shortest path method with the heuristic solution algorithm, and ultimately performs sensitive and scenario analysis for different parameters. The result shows that the proposed algorithm provided by this study is efficient and can improve the shortcomings of k-shortest path method.
關鍵字(中) ★ 動態地磅
★ 卡車
★ 雙層數學規劃
★ 啟發解法
★ 網路流動問題關鍵字(英) ★ Weigh-In-Motion
★ Truck
★ Bi-Level
★ Heuristic
★ Network Flow Problem論文目次 摘 要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 2
1.3 研究方法與流程 2
第二章 相關文獻回顧 4
2.1 卡車相關文獻 4
2.1.1 卡車產生之破壞 4
2.1.2 卡車之旅行成本 5
2.1.3 卡車之相關法規 6
2.2 動態地磅相關文獻 6
2.3 選址最佳化相關文獻 7
2.4 雙層數學規劃問題 10
2.5 運輸網路相關文獻 12
2.6 小結 13
第三章 模式構建 15
3.1 完全路徑模式基本假設 15
3.1.1 內華達州卡車路網 17
3.1.2 上層模式之路網 17
3.1.3 下層模式之路網 19
3.1.4 數學定式 20
3.1.5 上層目標式與限制式說明 22
3.1.6 下層目標式與限制式說明 23
3.2 K-Shortest Path(KSP)模式基本假設 23
3.2.1 數學定式 24
3.2.2 目標式與限制式說明 26
3.2.3 Besinovic et al. (2013)之模式 27
3.3 模式測試 29
3.4 模式討論 32
3.5 小結 33
第四章 求解演算法設計 34
4.1 啟發解法 34
4.2 改良之啟發解法 38
4.3 小結 42
第五章 範例測試 43
5.1 資料分析 43
5.1.1 超重卡車之相關資料 43
5.1.2 卡車動態地磅設置之成本 44
5.2 模式發展 45
5.2.1 問題規模 45
5.2.2 模式輸入資料 46
5.3 電腦演算環境及設定 46
5.3.1 電腦演算環境 46
5.3.2 相關參數設定 47
5.3.3 模式輸出資料 48
5.4 測試結果與分析 49
5.4.1 範例測試結果 49
5.4.2 KSP模式初始解與實際解之分析 50
5.4.3 預算上限之效益分析 51
5.4.4 KSP模式實際解與啟發解之分析 52
5.5 敏感度分析 54
5.5.1 低預算下之k-shortest path 敏感度分析 54
5.5.2 高預算下之k-shortest path 敏感度分析 55
5.5.3 罰鍰之敏感度分析 57
5.6 改良之啟發解法 58
5.6.1 改良之啟發解法範例測試 58
5.6.2 改良之啟發解法敏感度分析 59
5.7 小結 60
第六章 結論與建議 62
6.1 結論 62
6.2 建議 64
6.3 貢獻 64
參考文獻 66
附錄 69
附錄一 CPLEX Callable Library Code 69
附錄二 各卡車輸入資料一 70
附錄三 各卡車輸入資料二 73
參考文獻 1. 道路交通管理處罰條例, (2013)
http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=K0040012
2. 王惟志「廢棄機車回收廠區位選址之研究」,碩士論文,國立中央大學土木工程學系(2011) 。
3. 林家慶「在時間限制下有效率地探勘前K條最短路徑」,碩士論文,國立成功大學資訊工程學系碩博士班(2008) 。
4. 林育甫「利用K條最短路徑預測未知新陳代謝途徑」碩士論文,國立成功大學資訊管理研究所(2006) 。
5. 衷嵐焜「以雙層規劃模型建構救災物資分配行為之研究」,碩士論文,逢甲大學土木暨水利工程博士學位學程(2011) 。
6. 張佳儀「多重載具型態下企業選址之研究-中國中部區域為例」碩士論文,國立東華大學企業管理學系(2010) 。
7. 張凱羚,「永續城際運輸之雙層規劃模式」,碩士論文,國立交通大學交通運輸研究所(2007) 。
8. 張亦寬「以雙層次數學規劃建構旅客需求導向之票價設計模式-以台灣高鐵為例」,碩士論文,國立成功大學交通管理學系碩博士班(2004) 。
9. 曾煥元「通勤型自行車道路網改善模式暨求解演算法之研究」,碩士論文,國立中央大學土木工程研究所(2014) 。
10. 劉佳豪「動態地磅載重偵測系統設置之研究」,國立中央大學土木工程研究所(2000) 。
11. 謝昉叡「行車租賃系統佈署調度暨選址最佳化之研究」,碩士論文,國立中央大學土木工程學系(2011) 。
12. 顏上堯、林漢俊、張勻威,「自行車租賃佈署暨調度最佳化之研究」,都市交通,第二十六卷,第二期,頁1-頁12(2011)。
13. 顏上堯、陳俊穎、王領,「現有道路系統下通勤型自行車道初步路網設置之研究」,運輸學刊(TSSCI) (2014)。
14. Allen, G., Moruza, A. and Diefenderfer, B., “Oversize and overweight vehicle studies”, Virginia Department of Transportation, 2010.
http://dls.virginia.gov/GROUPS/transaccount/meetings/080410/oversize.pdf
15. AlGadhi S.A.H. “Optimizing Truck Weigh Stations’ Locations on the Highway Network of Saudi Arabia”, Journal of King Saud University, Vol. 22, Eng. Sci. (1), pp. 01-19, 2001.
16. Besinovic, N., Markovia, N. and Schonfeld, P., “Optimal Allocation of Truck Inspection Stations Based on k-Shortest Paths”, Transportation Research Record , 2013.
17. Barnes, G., Langworthy, P., “The Per-mile Costs of Operating Automobiles and Trucks”, Humphrey Institute of Public Affairs University of Minnesota, 2003.
18. Besinovic N., Markovic, N., and Schonfeld, P., “Location of Truck Inspection Stations Based on Stochastic Flows”, Presented at 91st Annual Meeting of Transportation Research Board, Washington, D.C, 2012.
19. Castelli, L., Labbe, M. and Violin, A., “A Network Pricing Formulation for the revenue maximization of European Air Navigation Service Providers” Transportation Research Part C: Emerging Technologies, Vol. 33, pp. 214-226, 2013.
20. Cheng, E.W. L., Li, H. and Yu, L., “A GIS approach to shopping mall location selection”, Building and environment Vol. 42, pp. 884-892, 2007.
http://www.sciencedirect.com/science/article/pii/S0360132305004385
21. Forkenbrock, D. J., ”External Costs of Intercity Truck Freight Transportation.”Public Policy,Center, University of Iowa, Iowa City, USA, 1999.
http://www.sciencedirect.com/science/article/pii/S0965856498000688#
22. ”Guide for the Design of New and Rehabilitated Pavement Structures: Phase II, NCHRP 1-37A”, National Cooperative Highway Research Program, Transportation Research Board,National Research Council, 2002.
23. Golias, M., M., Saharidis, G., K., D. and Boile, M., Theofanis, S., “Scheduling of Inbound Trucks at a Cross-Docking Facility: Bi-Objective VS Bi-Level Modeling Approaches” International Journal of Information Systems and Supply Chain Management5, Vol 5, Issue 1, 2012.
24. Lu, J., Shi, C. and Zhang, G., “On bilevel multi-follower decision making: General framework and solutions” Information Sciences, Vol. 176, Issue 11, pp. 1607-1627, 2006.
25. Santero N., Nokes, W. and Harvey, J., ” Virtual Weigh Stations: The Business Case. Technical Memorandum”, Pavement Research Center, Institute of Transportation Studies, University of California, Berkeley, 2005.
http://escholarship.org/uc/item/2432w0wj#page-8
26. Selmica, M., Teodorovica, D. and Katarina, V., “Locating inspection facilities in traffic networks: an artificial intelligence approach” Transportation Planning and Technology, Vol. 33, Issue 6, pp. 481-493, 2010.
27. Wu, Y., N., Yang, Y., S., Feng,T., t., Kong, L., N., Liu, W., Fu, L., J., “Macro-site selection of wind/solar hybrid power station based on Ideal Matter-Element Model”, International Journal of Electrical Power & Energy Systems,Vol. 50, pp. 76-84, 2013.
http://www.sciencedirect.com/science/article/pii/S0142061513000847
28. Xu, J., Tu, Y. and Lei, X., “Applying Multiobjective Bilevel Optimization under Fuzzy Random Environment to Traffic Assignment Problem: Case Study of a Large-Scale Construction Project” Journal of Infrastructure Systems , 2013.
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29IS.1943-555X.0000147
29. Yan, S. and Shih, Y.L., “A time-space network model for work team scheduling after a major disaster”, Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 63-75, 2007.
30. Yen J. Y., “Finding the K Shortest Loopless Paths in a Network”, Management Science (17) pp.712–716, 1971.
31. Zhaolin, L. and Feng, T., “On determining optimal fleet size and vehicle transfer policy for a car rental company,” Computers & Operations Research, Vol. 37, Issue 2, pp. 341-350, 2009.
指導教授 顏上堯(Shang-yao Yan) 審核日期 2014-7-11 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare