博碩士論文 101323014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.225.92.25
姓名 陳宇家(Yu-Chia Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒物質受自由落體衝擊之力學分析
(Mechanical Response of Granular Bed Subjected to Impact of a Free-drop Projectile)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討不同剛性及形狀的顆粒物質在透明壓克力罐體容器中受一自由落體衝擊作用之力學行為。利用加速規黏貼於自由落體上,記錄衝擊過程中的加速度值進而得知速度、灌入深度及顆粒對落體之阻力,並利用高速攝影機拍攝衝擊過程。透過廣義虎克定律將罐體上三個不同高度位置所量測的應變值計算應力,藉以分析罐壁在顆粒受衝擊過程中應力隨高度變化之情形。本研究選擇兩種不同材質探討不同剛性顆粒受衝擊下,顆粒與罐體間力學行為之差異 ; 此外,選擇球形、二款橢圓形、藥丸形、雙球形共五種不同形狀之ABS顆粒進行衝擊實驗,並將實驗結果分別依不同顆粒形狀、顆粒長寬比、顆粒角數進行比較分析以探討其受自由落體衝擊之力學響應。對於高剛性之顆粒則選擇球形及藥丸形兩種形狀之不銹鋼顆粒來探討高剛性顆粒的形狀效應。
實驗結果顯示,球形ABS顆粒及不銹鋼顆粒對罐壁產生之環向應力皆為張應力並隨高度減少而減少,而軸向應力在上層會因為顆粒濺出而對罐體造成張應力,其下層為壓應力並隨高度減少而增加。剛性大之顆粒會增加顆粒對落體之阻力,造成灌入深度遠小於剛性小之顆粒,其罐壁應力值也遠大於剛性小之顆粒,顯示在鋼性較大的顆粒床中應力較容易傳遞。而由於硬質顆粒床之灌入深度較淺,罐體大半部分內壁屬於受壓力的狀態。
將球形、橢圓形、藥丸形 ABS顆粒之實驗結果進行比較,藥丸形顆粒擁有較明顯之互鎖效應,使得整體顆粒床之剛性較大,進而增加阻力導致灌入深度較淺,且不易側向移動,產生較小的環向及軸向應力比。圓球則是體積較小使得接觸落體面積較多且易側向移動,產生較大阻力,也產生較深的灌入深度,因此有較大的環向與軸向應力比。而橢圓形顆粒,由於互鎖效應較不明顯,橢圓形顆粒的環向及軸向應力比介於兩種形狀之間。針對橢圓形顆粒增加其長寬比會提升整體顆粒床的剛性,但整體之間的形狀效應差異不明顯。而長寬比小的顆粒接觸落體數目較多,產生較大阻力。另一方面,增加顆粒角數會提升顆粒體內部的互鎖效應,使得雙球形顆粒不易滑動,導致灌入深度淺及側向移動皆小,其阻力及環向與軸向應力比皆小於圓球顆粒。
採用球形、藥丸形之不銹鋼顆粒進行衝擊實驗,其環向應力與ABS顆粒趨勢一致,而在藥丸形之不銹鋼顆粒的軸向應力在底部呈現與ABS顆粒相反趨勢,進而顯示藥丸形之不銹鋼顆粒由於互鎖效應大而幾乎不滑動的現象,導致在底部的軸向應力減小,也顯示剛性大之顆粒的形狀效應較為明顯。
摘要(英) The purpose of this study is to investigate the effects of particle stiffness and shape on the interactions between a granular bed and an acrylic container and the relevant mechanical responses at various positions during impact by a free-drop projectile. The acceleration data recorded by an accelerometer are used to calculate the penetration depth and velocity of the projectile and vertical drag force. Variations of strains in the container wall are measured through strain gages attached at three heights and used to calculate the relevant stresses through a generalized Hooke’s law. Two kinds of particle material, namely steel and ABS, are selected to characterize the effect of particle stiffness. In addition, the experimental results of five selected particle shapes, namely spherical, ellipsoidal I, ellipsoidal II, cylindrical, and paired ABS particles, are compared to characterize the effects of particle shape, aspect ratio, and particle angularity. For the high-stiffness particle, the experimental results for steel particles of spherical and cylindrical shapes are also compared to characterize the shape effect.
Experimental results of the spherical ABS particles and steel particles show the peak hoop stress in the container wall is of tensile stress and decreases gradually from the top of the container to the bottom. The peak axial stress is of compressive stress except for the top position and decreases gradually from middle to bottom due to various types of particle movement. For the high-stiffness particles, a greater vertical force leads to a shallow penetration and the container wall is subjected to a greater force during impact. It indicates that particles of a larger stiffness are easy to transmit force and dissipate less energy on deformation. The projectile does not completely penetrate into the steel granular bed leading to a greater extent of confined compression for the particles located at the bottom of the container.
For spherical, ellipsoidal, and cylindrical particles, cylindrical particles have a greater interlocking effect, resulting in a greater stiffness of the granular bed. Therefore, a greater vertical drag force is generated by the cylindrical particles and leads to a smaller penetration depth. A less extent of particle movement in the granular bed of cylindrical particles results in a lower hoop and axial ratio. For the spherical particles, interactions between particles are intensified for their smaller size and exert more drag force on the projectile. The hoop and axial stress ratio is greater due to a greater extent of particle movement and a deeper penetration depth. An increase in the aspect ratio of ellipsoidal particles causes a greater stiffness of the granular bed, but the interlocking effect of the ellipsoidal particle is insignificant. For a smaller aspect ratio, as the size is smaller than that of a larger aspect ratio, the interactions between particles are intensified and exert more drag force on the projectile. On the other hand, a higher particle angularity results in a greater interlocking effect and a less extent of particle movement in the granular bed of paired particles. The vertical drag force, hoop stress ratio, and axial stress ratio of the paired particles are smaller than those of the spherical particles.
For spherical and cylindrical steel particles, the variation of peak hoop stress in the container wall shows a similar trend to that of ABS particles. For cylindrical steel particles, the axial stress shows an opposite trend to that of ABS particles at the bottom position. It indicates a less extent of particle movement in the granular bed of cylindrical steel particles due to a greater interlocking effect, resulting in a decrease in the axial stress at the bottom position. Apparently, the shape effect is more pronounced for hard particles.
關鍵字(中) ★ 顆粒
★ 衝擊
★ 顆粒床
★ 拋射體
關鍵字(英) ★ particle
★ impact
★ granular bed
★ projectile
論文目次 TABLE OF CONTENTS
1. INTRODUCTION
1.1 Granular Materials
1.2 Collision of Granular Media
1.3 Shape of Granular Materials
1.4 Stiffness of Granular Materials
1.5 Purpose
2. EXPERIMENTAL PROCEDURES
2.1 Impact Test
2.1.1 Experimental setup
2.1.2 Experimental procedure
2.2 Material Properties
3. RESULTS AND DISCUSSION
3.1 Mechanical Response of Granular Bed During Impact
3.2 Effect of Material Stiffness
3.3 Effect of Particle Shape
3.3.1 Shape effect
3.3.2 Aspect-ratio effect
3.3.3 Spherical and paired particles
3.4 Shape Effect for High-Stiffness Particles
4. CONCLUSIONS
REFERENCES
TABLES
FIGURES
參考文獻 1. H. J. Herrmann, “Granular Matter,” Physica A, Vol. 313, pp. 188-210, 2002.
2. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, A. Kong, P. J. Narayan, and B. C. Hancock, “Granular Segregation in Discharging Cylindrical Hoppers: A Discrete Element and Experimental Study,” Chemical Engineering Science, Vol. 62, pp. 6423-6439, 2007.
3. J. Härtl, “A Study of Granular Solids in Silos with and Without an Insert,” Ph.D. Thesis, The University of Edinburgh, January, 2008.
4. J. Sadowski and J. M. Rotter, “Study of Buckling in Steel Silos under Eccentric Discharge Flows of Stored Solids,” Journal of Engineering Mechanics, Vol. 136, pp. 769-776, 2010.
5. F. Qin, L. H. Guo, J. P. Chen, and Z. J. Chen, “Pulverization, Expansion of La0.6Y0.4Ni4.8Mn0.2 During Hydrogen Absorption-Desorption Cycle and Their Influences in Thin-Wall Reactors,” International Journal of Hydrogen Energy, Vol. 33, pp. 709-717, 2008.
6. X. Hu, Z. Qi, F. Qin, and J. Chen, “Mechanism Analysis on Stress Accumulation in Cylindrical Vertical-Placed Metal Hydride Reactor,” Energy and Power Engineering, Vol. 3, pp. 490-498, 2011.
7. M. Okumura, K. Terui, A. Ikado, Y. Saito, M. Shoji, Y. Matsushita, H. Aoki, T. Miura, and Y. Kawakami, “Investigation of Wall Stress Development and Packing Ratio Distribution in the Metal Hydride Reactor,” International Journal of Hydrogen Energy, Vol. 37, pp. 6686-6693, 2012.
8. H. J. Herrmann, J. P. Hovi, and S. Luding, “Physics of Dry Granular Media,” NATO ASI Series E: Applied Sciences, Vol. 350, pp. 371-400, 1998.
9. M. B. Stone, “Stress Propagation: Getting to the Bottom of a Granular Medium,” Nature, Vol. 427, pp. 503-504, 2004
10. M. P. Ciamarra, A. H. Lara, A. T. Lee, D. I. Goldman, I.Vishik, and H. L. Swinney, “Dynamics of Drag and Force Distributions for Projectile Impact in a Granular Medium,” Physical Review Letter, Vol. 92, 194301, 2004.
11. J. R. de Bruyn and A. M. Walsh, “Penetration of Spheres into Loose Granular Media” Canadian Journal of Physics, Vol. 82, pp. 439-446, 2004.
12. W. A. Allen, E. B. Mayfield, and H. L. Morrison, “Dynamics of a Projectile Penetrating Sand,” Journal of Applied Physics, Vol. 28, pp. 370-376, 1957.
13. M. J. Forrestal and V. K. Luk, “Penetration into Soil Targets,” International Journal of Impact Engineering, Vol. 12, pp. 427-444, 1992.
14. D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, and H. Kuipers, “Impact on Soft Sand: Void Collapse and Jet Formation,” Physical Review Letter, Vol. 93, 198003, 2004.
15. M. Hou, Z. Peng, R. Liu, K. Lu, and C. K. Chan, “Dynamics of a Projectile Penetrating in Granular Systems,” Physical Review E, Vol. 72, 062301, 2005.
16. Y. Boguslavskii, S. Drabkin, and A. Salman, “Analysis of Vertical Projectile Penetration in Granular Soils” Journal of Physics D, Vol. 29, pp. 905-916, 1996.
17. M. Walsh, K. E. Holloway, P. Habdas, and J. R. de Bruyn, “Morphology and Scaling of Impact Craters in Granular Media,” Physical Review Letter, Vol. 91, 104301, 2003.
18. D. Howell, R. P. Behringer, and C. Veje, “Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition,” Physical Review Letter, Vol. 82, pp. 5241-2544, 1999.
19. D. M. Mueth, H. M. Jaeger, and S. R. Nagel, “Force Distribution in a Granular Medium,” Physical Review E, Vol. 57, pp. 3164-3169, 1998.
20. H. A. Makse, D. L. Johnson, and L. M. Schwartz, “Packing of Compressible Granular Materials,” Physical Review Letter, Vol. 84, pp. 4160-4163, 2000.
21. M. A. Ambroso, R. D. Kamien, and D. J. Durian, “Dynamics of Shallow Impact Cratering,” Physical Review E, Vol. 72, 041305, 2005.
22. M. A. Ambroso, C. R. Santore, A. R. Abate, and D. J. Durian, “Penetration Depth for Shallow Impact Cratering,” Physical Review E, Vol. 71, 051305, 2005.
23. M. S. Abd-Elhady, C. C. M. Rindt, and A. A. van Steenhoven, “Contact Time of an Incident Particle Hitting a 2D Bed of Particles,” Powder Technology, Vol. 191, pp. 315-326, 2009.
24. D. I. Goldman and P. Umbanhowar, “Scaling and Dynamics of Sphere and Disk Impact into Granular Media,” Physical Review E, Vol. 77, 021308, 2008.
25. A. Shukla and C. Damania, “Experimental Investigation of Wave Velocity and Dynamic Contact Stress in an Assembly of Discs,” Journal of Experimental Mechanics, Vol. 27, pp. 268–281, 1987.
26. K. Wada, H. Senshu, and T. Matsui, “Numerical Simulation of Impact Cratering on Granular Material,” Icarus, Vol. 180, pp. 528-545, 2006.
27. L. S. Tsimring and D. Volfson, “Modeling of Impact Cratering in Granular Media,” Powders and Grains, Vol. 2, pp. 1215-1223, 2005.
28. A. Dziugys and B. Peters, “An Approach to Simulate the Motion of Spherical and Non-Spherical Fuel Particles in Combustion Chambers,” Granular Matter, Vol. 3, pp. 231-265, 2001.
29. J. S. Yoon, A. Zang, and O. Stephansson, “Simulating Fracture and Friction of Aue Granite under Confined Asymmetric Compressive Test Using Clumped Particle Model,” International Journal of Rock Mechanics and Mining Sciences, Vol. 49, pp. 68-83, 2012.
30. M. C. Kulkarni and O. O. Ochoa, “Mechanics of Light Weight Proppants: A Discrete Approach,” Composites Science and Technology, Vol. 72, pp. 879-885, 2012.
31. J. Wiącek, M. Molenda, J. Horabik, and J. Y. Ooi, “Influence of Grain Shape and Intergranular Friction on Material Behavior in Uniaxial Compression: Experimental and DEM Modeling,” Powder Technology, Vol. 217, pp. 435-442, 2012.
32. J. Härtl and J. Y. Ooi, “Numerical Investigation of Particle Shape and Particle Friction on Limiting Bulk Friction in Direct Shear Tests and Comparison with Experiments,” Powder Technology, Vol. 212, pp. 231-239, 2011.
33. A. A. Peña, R. G. Rojo, and H. J. Herrmann, “Influence of Particle Shape on Sheared Dense Granular Media,” Granular Matter, Vol. 9, pp. 279-291, 2007.
34. G. Dondi, A. Simone, V. Vignali, and G. Manganelli, “Numerical and Experimental Study of Granular Mixes for Asphalts,” Powder Technology, Vol. 232, pp. 31-40, 2012.
35. K. Szarf, G. Combe, and P. Villard, “Polygons vs. Clumps of Discs: A Numerical Study of the Influence of Grain Shape on the Mechanical Behavior of Granular Materials,” Powder Technology, Vol. 208, pp. 279-288, 2011.
36. S. J. Lee, Y. M. A. Hashash, and E. G. Nezami, “Simulation of Triaxial Compression Ttests with Polyhedral Discrete Elements,” Computers and Geotechnics, Vol. 43, pp. 92-100, 2012.
37. H.-H. Peng, “Effects of Particle Friction and Particle Shape on the Mechanical Response of Granular Solid under Confined Compression,” M.S. Thesis, National Central University, July, 2013.
38. W. J. Shiu and F. V. Donzé, “Numerical Study of Rockfalls on Covered Galleries by the Discrete Elements Method,” Electronic Journal of Geotechnical Engineering, Vol. 11, No. D, 2006.
39. eFunda, Inc., PMMA, http://www.efunda.com/materials/polymers/, accessed on May 10, 2012.
40. W. T. Nakayama, D. R. Hall, D. E. Grenoble, and J. L. Katz, “Elastic Properties of Dental Resin Restorative Materials,” Journal of Dental Research, Vol. 53, pp. 1121-1126, 1974.
41. MatWeb, AISI 1012 steel, http://www.matweb.com/, accessed on April 16, 2013.
42. MatWeb, AISI E 52100 steel, http://www.matweb.com/, accessed on May 12, 2014.
43. MatWeb, Chi Mei Polylac® PA-707 ABS, http://www.matweb.com/, accessed on April 25, 2013.
44. Engineers Edge, Common Plastic Molding Design Material Specification, http://www.engineersedge.com/, accessed on April 25, 2013
45. H.-T. Chou, C.-F. Lee, Y.-C. Chung, and S.-S. Hsiau, “Discrete Element Modelling and Experimental Validation for the Falling Process of Drygranular Steps,” Powder Technology, Vol. 231, pp. 122-134, 2012.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明