博碩士論文 101323083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.129.211.190
姓名 林雨澤(Yu-Tse Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 平方和模糊控制器設計-齊次多項式法
(SOS-based Fuzzy Controller Design - Homogeneous Polynomial Approach)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測★ 寬鬆耗散性模糊控制-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究連續與離散模糊控制系統的非二次穩定
(non-quadratic stability) 條件,關於擴展狀態決定於高階的非二次李
亞普諾夫函數,其函數形式是V(x)= 1/2x′Q^−1(x)x,對於連續系統而
言,其李亞普諾夫函數V(x)對時間t 微分將會產生Q(x)之微分項,為了避免這個問題,將引用尤拉齊次多項式定理,並且使用建模技巧泰勒級數,再以平方和方法(sum of squares) 去檢驗其模糊系統之穩定性條件;對於離散系統而言,也引用尤拉齊次多項式定理,以平方和方法檢驗其模糊系統之穩定性條件。最後,模擬其多項式模糊系統,表現出本論文提出之方法是有效的。
摘要(英) In this thesis,it is mainly to research the non-quadratic stability conditions of continuous and discrete-time fuzzy systems.Extension of the state dependent Riccati inequalities to non-quadratic Lyapunov function of the form V (x) = 1/2x′Q−1(x)x.For the continuous case,it will
produce the derivative term of Q(x)from V(x) for differential t,in order to avoid this problem,we will reference Euler homogeneous polynomial theorem,using the theorem to detect its stability conditions of fuzzy systems,
and use the modeling techniques Taylor series,then test it with the method of sum of squares to determine the stability.For the discrete-time case,also reference Euler homogeneous polynomial theorem,determining the stability with the method of sum of squares.Lastly, examples of polynomial fuzzy systems are demonstrated to show the proposed method being effective.
關鍵字(中) ★ 非二次穩定
★ 平方和
★ 參數相依齊次多項式
★ 模糊系統
★ 尤拉齊次多項式定理
★ 泰勒級數
關鍵字(英) ★ Non-quadratic stability
★ Sum of squares
★ Homogeneous polynomially parameter-dependent functions
★ T-S fuzzy systems
★ Euler’s Theorem for Homogeneous Functions
★ Taylor-Series
論文目次 中文摘要---------------------i
英文摘要---------------------ii
謝誌------------------------iii
目錄------------------------iv
圖目錄----------------------vi
背景介紹---------------------1
連續及離散系統架構與檢測條件----8
平方和檢測條件---------------25
電腦模擬--------------------31
結論與未來研究方向------------62
附錄一----------------------64
參考文獻--------------------70
參考文獻 [1] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang. A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Systems,17(4):911–922, August 2009.
[2] A. Sala and C. Arino. Polynomial fuzzy models for nonlinear control: A Taylor series approach. IEEE Trans. Fuzzy Systems, 17(6):1284–1295, December 2009.
[3] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst., Man,Cybern., 15(1):116–132, January 1985.
[4] M. Sugeno and G.T. Kang. Structure identification of fuzzy model.Fuzzy Set and Systems, 28:15–33, 1988.
[5] K. Tanaka and M. Sugeno. Stability analysis and design of fuzzy control systems. Fuzzy Set and Systems, 45:135–156, 1992.
[6] W.M. Haddad and D.S. Bernstein. Explicit construction of
quadratic Lyapunov functions for the small gain, positive, circle
and Popov theorems and their application to robust stability. Part
II: discrete-time theory. Int’l J. of Robust and Nonlinear Control,
4:249–265, 1994.
[7] P.A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis,Caltech, Pasadena, CA., May 2000.
[8] S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing SOSTOOLS:a general purpose sum of squares programming solver. In Proc of IEEE CDC, pages 741–746, Montreal, Ca, July 2002.
[9] S. Prajna, A. Papachristodoulou, and et al. New developments on
sum of squares optimization and SOSTOOLS. In Proc. the 2004
American Control Conference, pages 5606–5611, 2004.
[10] H. Ichihara. Observer design for polynomial systems using convex optimization. In Proc. of the 46th IEEE CDC, pages 5347–5352,New Orleans, LA, December 2007.
[11] J. Xu, K.Y. Lum, and et al. A SOS-based approach to residual generators for discrete-time polynomial nonlinear systems. In Proc.of the 46th IEEE CDC, pages 372–377, New Orleans, LA, December 2007.
[12] J. Xie, L. Xie, and Y. Wang. Synthesis of discrete-time nonlinear systems: A SOS approach. In Proc. of the 2007 American Control Conference, pages 4829–4834, New York, NY, July 2007.
[13] K. Tanaka, H. Yoshida, and et al. A sum of squares approach to stability analysis of polynomial fuzzy systems. In Proc. of the 2007 American Control Conference, pages 4071–4076, New York, NY, July 2007.
[14] K. Tanaka, H. Yoshida, and et al. Stabilization of polynomial fuzzy systems via a sum of squares approach. In Proc. of the 22nd Int’l Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control, pages 160–165, Singapore, October 2007.
[15] H. Ichihara and E. Nobuyama. A computational approach to state feedback synthesis for nonlinear systems based on matrix sum of squares relaxations. In Proc. 17th Int’l Symposium on Mathematical Theory of Network and Systems, pages 932–937, Kyoto, Japan,2006.
[16] C.W.J. Hol and C.W. Scherer. Sum of squares relaxations for polynomial semidefinite programming. In Proc.of MTNS, pages 1–10,2004.
[17] E. Kim and H. Lee. New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Systems,8(5):523–534, October 2000.
[18] X.D. Liu and Q.L. Zhang. New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica,39:1571–1582, June 2003.
[19] C.H. Fang, Y.S. Liu, S.W. Kau, L. Hong, and C.H. Lee. A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems. IEEE Trans. Fuzzy Systems, 14(3):386–397, June 2006.
[20] H.O. Wang, K. Tanaka, and M.F. Griffin. An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Systems, 4(1):14–23, February 1996.
[21] M. Johansson, A. Rantzer, and K.-E. Arzen. Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Systems, 7(6):713–722, December 1999.
[22] G. Feng. Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Circuits and Syst. I:Fundamental Theory and Applications, 11(5):605–612, 2003.
[23] D. Sun G. Feng, C. Chen and Y. Zhu. H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Trans. Circuits and Syst. I:Fundamental Theory and Applications, 13(1):94–103, 2005.
[24] T. M. Guerra and L. Vermeiren. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form. Automatica, 40:823–829, 2004.
[25] B.C. Ding, H. Sun, and P Yang. Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagisugeno’s form. Automatica, 43:503–508, 2006.
[26] X. Chang and G. Yang. FA descriptor representation approach to observer-based H∞ control synthesis for discrete-time fuzzy systems.Fuzzy Set and Systems, 185(1):38–51, 2010.
[27] B. Ding. Stabilization of Takagi-Sugeno model via nonparallel distributed compensation law. IEEE Trans. Fuzzy Systems, 18(1):188–194, February 2010.
[28] A. Jaadari J. Pan, S. Fei and T. M. Guerra. Nonquadratic stabilization of continuous T-S fuzzy models: LMI solution for local approach. IEEE Trans. Fuzzy Systems, 20(3):594–602, 2012.
[29] J. B. Park D. H. Lee and Y. H. Joo. Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems. Automatica, 47(3):534–538, 2011.
[30] J.R. Wan and J.C. Lo. LMI relaxations for nonlinear fuzzy control systems via homogeneous polynomials. In The 2008 IEEE World Congress on Computational Intelligence, FUZZ2008, pages 134–140, Hong Kong, CN, June 2008.
[31] V.F. Montagner, R.C.L.F Oliveira, and P.L.D. Peres. Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controller for Takagi-sugeno systems. In Proc. of the 2007 American Control Conference, pages 4059–4064, July 2007.
[32] R.C.L.F Oliveira and P.L.D. Peres. Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans.Automatic Control, 52(7):1334–1340, July 2007.
[33] R.C.L.F Oliveira and P.L.D. Peres. LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability. In Proc. of 44th IEEE Conf. on Deci and Contr,pages 1660–1665, Seville, Spain, December 2005.
[34] C. Ebenbauer, J. Renz, and F. Allgower. Polynomial Feedback and Observer Design using Nonquadratic Lyapunov Functions.
[35] S. Prajna, A. Papachristodoulou, and F. Wu. Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based Approach.In Proc. 5th Asian Control Conference, pages 157–165, July 2004.
[36] H. K. Lam. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-modelbased control approach. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on, 42(1):258–267, 2012.
[37] Kazuo Tanaka, Hiroshi Ohtake, Toshiaki Seo, Motoyasu Tanaka,and Hua O Wang. Polynomial fuzzy observer designs: a sum-ofsquares approach. Systems, Man, and Cybernetics, Part B: Cybernetics,IEEE Transactions on, 42(5):1330–1342, 2012.
[38] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities, second edition. Cambridge University Press, Cambridge, UK., 1952.
[39] V. Power and B. Reznick. A new bound for Pólya’s Theorem with applications to polynomials positive on polyhedra. J. Pure Appl.Algebra, 164:221–229, 2001.
[40] J. de Loera and F. Santos. An effect version of Pólya’s Theorem on positive definite forms. J. Pure Appl. Algebra, 108:231–240, 1996.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明