參考文獻 |
1. Jiang, Y.H., et al., Pluripotency of mesenchymal stem cells derived from adult marrow (vol 418, pg 41, 2002). Nature, 2007. 447(7146): p. 879-880.
2. Higuchi, A., et al., Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews, 2012. 112(8): p. 4507-4540.
3. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
4. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
5. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
6. Lin, S.L., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008. 14(10): p. 2115-24.
7. Zhou, H., et al., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009. 4(5): p. 381-4.
8. Favre, G., et al., Differences between graft product and donor side effects following bone marrow or stem cell donation. Bone Marrow Transplant, 2003. 32(9): p. 873-80.
9. Bosi, A. and B. Bartolozzi, Safety of bone marrow stem cell donation: a review. Transplant Proc, 2010. 42(6): p. 2192-4.
10. Gratwohl, A., et al., Predictability of hematopoietic stem cell transplantation rates. Haematologica, 2007. 92(12): p. 1679-86.
11. Hamidieh, A.A., et al., Autologous stem cell transplantation as treatment modality in a patient with relapsed pancreatoblastoma. Pediatr Blood Cancer, 2010. 55(3): p. 573-6.
12. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, 2008. 85A(4): p. 853-861.
13. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. J Cell Biochem, 2006. 98(5): p. 1076-84.
14. Scadden, D.T., The stem-cell niche as an entity of action. Nature, 2006. 441(7097): p. 1075-1079.
15. Horwitz, E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A, 2002. 99(13): p. 8932-7.
16. Arinzeh, T.L., et al., Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am, 2003. 85-A(10): p. 1927-35.
17. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-147.
18. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-301.
19. Crisan, M., et al., A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 2008. 3(3): p. 301-13.
20. Brighton, C.T. and R.M. Hunt, Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am, 1991. 73(6): p. 832-47.
21. Netter, F.H., Musculoskeletal system : anatomy, physiology, and metabolic disorders. U.S.A : Indoo. 1987.
22. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
23. Mizuno, H., M. Tobita, and A.C. Uysal, Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells, 2012. 30(5): p. 804-10.
24. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
25. van Dijk, A., et al., Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res, 2008. 334(3): p. 457-67.
26. Schaffler, A. and C. Buchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-27.
27. Oedayrajsingh-Varma, M.J., et al., Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006. 8(2): p. 166-77.
28. Mitchell, J.B., et al., Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 2006. 24(2): p. 376-85.
29. Zaragosi, L.E., G. Ailhaud, and C. Dani, Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells, 2006. 24(11): p. 2412-9.
30. Rubio, D., et al., Spontaneous human adult stem cell transformation. Cancer Res, 2005. 65(8): p. 3035-9.
31. Azarin, S.M. and S.P. Palecek, Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 2010. 48(3): p. 378-384.
32. Serra, M., et al., Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 2012. 30(6): p. 350-359.
33. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
34. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology, 2010. 146(3): p. 143-146.
35. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
36. Ferreira, L.S., et al., Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007. 28(17): p. 2706-2717.
37. Maia, J., et al., Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. Acs Nano, 2011. 5(1): p. 97-106.
38. Ao, A., J.J. Hao, and C.C. Hong, Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry & Biology, 2011. 18(4): p. 413-424.
39. Burdick, J.A. and F.M. Watt, High-throughput stem-cell niches. Nature Methods, 2011. 8(11): p. 915-916.
40. Bauwens, C.L., et al., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells, 2008. 26(9): p. 2300-2310.
41. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
42. Veraitch, F.S., et al., The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnology and Bioengineering, 2008. 99(5): p. 1216-1229.
43. Ezashi, T., P. Das, and R.M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4783-4788.
44. Forsyth, N.R., et al., Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning and Stem Cells, 2006. 8(1): p. 16-23.
45. Liu, Q., et al., A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials, 2008. 29(36): p. 4792-9.
46. Ahn, H.H., et al., In vivo osteogenic differentiation of human adipose-derived stem cells in an injectable in situ-forming gel scaffold. Tissue Eng Part A, 2009. 15(7): p. 1821-32.
47. Flynn, L.E., The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010. 31(17): p. 4715-24.
48. Natesan, S., et al., Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres. Tissue Engineering Part A, 2010. 16(4): p. 1369-1384.
49. Awad, H.A., et al., Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 2004. 25(16): p. 3211-3222.
50. Betre, H., et al., Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials, 2006. 27(1): p. 91-99.
51. Estes, B.T., A.W. Wu, and F. Guilak, Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis and Rheumatism, 2006. 54(4): p. 1222-1232.
52. Mahmoudifar, N. and P.M. Doran, Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials, 2010. 31(14): p. 3858-3867.
53. van Dijk, A., et al., Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 2008. 334(3): p. 457-467.
54. Madonna, R. and R. De Caterina, Adipose tissue: a new source for cardiovascular repair. Journal of Cardiovascular Medicine, 2010. 11(2): p. 71-80.
55. Huang, T.T., et al., Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. Journal of Spinal Cord Medicine, 2007. 30: p. S35-S40.
56. Kingham, P.J., C. Mantovani, and G. Terenghi, Notch independent signalling mediates Schwann cell-like differentiation of Adipose Derived Stem Cells. Neuroscience Letters, 2009. 467(2): p. 164-168.
57. Zemel, R., et al., Expression of liver-specific markers in naive adipose-derived mesenchymal stem cells. Liver International, 2009. 29(9): p. 1326-1337.
58. Timper, K., et al., Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochemical and Biophysical Research Communications, 2006. 341(4): p. 1135-1140.
59. Chandra, V., et al., Generation of Pancreatic Hormone-Expressing Islet-Like Cell Aggregates from Murine Adipose Tissue-Derived Stem Cells. Stem Cells, 2009. 27(8): p. 1941-1953.
60. Xu, M.G., et al., An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials, 2010. 31(14): p. 3868-3877.
61. von Heimburg, D., et al., Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials, 2001. 22(5): p. 429-438.
62. Halbleib, M., et al., Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials, 2003. 24(18): p. 3125-3132.
63. Dawson, J.I., et al., Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 2008. 29(21): p. 3105-3116.
64. Park, I.S., et al., The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials, 2009. 30(36): p. 6835-6843.
65. Nigro, J., et al., The effect of bovine endosteum-derived particles on the proliferation of human mesenchymal stem cells. Biomaterials, 2010. 31(21): p. 5689-5699.
66. Ward, D.F., Jr., et al., Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells and Development, 2007. 16(3): p. 467-479.
67. Rider, D.A., et al., Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells, 2008. 26(6): p. 1598-608.
68. Mochizuki, T., et al., Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum, 2006. 54(3): p. 843-53.
69. Stein, G.S., et al., Transcriptional control of osteoblast growth and differentiation. Physiol Rev, 1996. 76(2): p. 593-629.
70. Martin, I., et al., Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res, 2001. 55(2): p. 229-35.
71. Noth, U., et al., Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A, 2007. 83(3): p. 626-35.
72. Planat-Benard, V., et al., Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res, 2004. 94(2): p. 223-9.
73. Miyahara, Y., et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006. 12(4): p. 459-65.
74. Strem, B.M., et al., Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, 2005. 7(3): p. 282-91.
75. Rodriguez, A.M., et al., Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, 2005. 201(9): p. 1397-405.
76. Zimmerlin, L., et al., Stromal vascular progenitors in adult human adipose tissue. Cytometry A, 2010. 77(1): p. 22-30.
77. Yoshimura, K., et al., Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol, 2006. 208(1): p. 64-76.
78. Civin, C.I., et al., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol, 1984. 133(1): p. 157-65.
79. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-7.
80. Pusztaszeri, M.P., W. Seelentag, and F.T. Bosman, Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem, 2006. 54(4): p. 385-95.
81. Lin, G., et al., Defining stem and progenitor cells within adipose tissue. Stem Cells Dev, 2008. 17(6): p. 1053-63.
82. Traktuev, D.O., et al., A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res, 2008. 102(1): p. 77-85.
83. Zannettino, A.C., et al., Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol, 2008. 214(2): p. 413-21.
84. Sengenes, C., et al., Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol, 2005. 205(1): p. 114-22.
85. Higuchi, A., et al., Cell separation between mesenchymal progenitor cells through porous polymeric membranes. J Biomed Mater Res B Appl Biomater, 2005. 74(1): p. 511-9.
86. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. J Biomed Mater Res A, 2006. 78(3): p. 491-9.
87. Rodbell, M., Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem, 1966. 241(1): p. 130-9.
88. Rodbell, M., The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem, 1966. 241(17): p. 3909-17.
89. Rodbell, M. and A.B. Jones, Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem, 1966. 241(1): p. 140-2.
90. Kurita, M., et al., Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg, 2008. 121(3): p. 1033-41; discussion 1042-3.
91. Chen, D.-C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
92. Higuchi, A., et al., Peripheral blood cell separation through surface-modified polyurethane membranes. J Biomed Mater Res A, 2004. 68(1): p. 34-42.
93. Higuchi, A., et al., Separation of Hematopoietic Stem and Progenitor Cells from Human Peripheral Blood Through Polyurethane Foaming Membranes Modified with Several Amino Acids. Journal of Applied Polymer Science, 2009. 114(2): p. 671-679.
94. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
95. Fulwyler, M.J., Electronic separation of biological cells by volume. Science, 1965. 150(3698): p. 910-1.
96. Sweet, R.G., High Frequency Recording with Electrostatically Deflected Ink Jets. Review of Scientific Instruments, 1965. 36(2): p. 131-136.
97. Van Dilla, M.A., M.J. Fulwyler, and I.U. Boone, Volume Distribution and Separation of Normal Human Leucocytes. Experimental Biology and Medicine, 1967. 125(2): p. 367-370.
98. Bonner, W.A., et al., Fluorescence Activated Cell Sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
99. Johnson, K.W., M. Dooner, and P.J. Quesenberry, Fluorescence Activated Cell Sorting: A Window on the Stem Cell. Current Pharmaceutical Biotechnology, 2007. 8(3): p. 133-139.
100. Assenmacher, M., et al., FLUORESCENCE-ACTIVATED CYTOMETRY CELL SORTING BASED ON IMMUNOLOGICAL RECOGNITION. Clinical Biochemistry, 1995. 28(1): p. 39-40.
101. Miltenyi, S., et al., High gradient magnetic cell separation with MACS. Cytometry, 1990. 11(2): p. 231-238.
102. Kato, K. and A. Radbruch, Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting. Cytometry, 1993. 14(4): p. 384-392.
103. de Wynter, E.A., et al., Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells, 1995. 13(5): p. 524-32.
104. McNiece, I., et al., Large-scale isolation of CD34+ cells using the Amgen cell selection device results in high levels of purity and recovery. J Hematother, 1997. 6(1): p. 5-11.
105. Richel, D.J., et al., Highly purified CD34+ cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients. Bone Marrow Transplant, 2000. 25(3): p. 243-9.
106. Rosso, F., et al., From cell-ECM interactions to tissue engineering. J Cell Physiol, 2004. 199(2): p. 174-80.
107. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6.
108. Putnam, A.J. and D.J. Mooney, Tissue engineering using synthetic extracellular matrices. Nature Medicine, 1996. 2(7): p. 824-826.
109. Daley, W.P., S.B. Peters, and M. Larsen, Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 2008. 121(3): p. 255-264.
110. Rozario, T. and D.W. DeSimone, The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, 2010. 341(1): p. 126-140.
111. Chen, L.Y., et al., Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Biomaterialia, 2012. 8(5): p. 1749-1758.
112. Rosso, F., et al., Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 2005. 203(3): p. 465-470.
113. Moroni, L., J.R. De Wijn, and C.A. Van Blitterswijk, Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science-Polymer Edition, 2008. 19(5): p. 543-572.
114. Mano, J.F., et al., Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007. 4(17): p. 999-1030.
115. Di Lullo, G.A., et al., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. Journal of Biological Chemistry, 2002. 277(6): p. 4223-4231.
116. Hosseinkhani, H., et al., Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly( glycolic acid) fiber. Tissue Engineering, 2005. 11(9-10): p. 1476-1488.
117. Shih, Y.R.V., et al., Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells, 2006. 24(11): p. 2391-2397.
118. Donzelli, E., et al., Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Archives of Oral Biology, 2007. 52(1): p. 64-73.
119. Sefcik, L.S., et al., Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(4): p. 210-220.
120. Mueller, S.M. and J. Glowacki, Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. Journal of Cellular Biochemistry, 2001. 82(4): p. 583-590.
121. Sado, Y., et al., Organization and expression of basement membrane collagen IV genes and their roles in human disorders. Journal of Biochemistry, 1998. 123(5): p. 767-776.
122. Giunta, C., et al., Homozygous Gly530Ser substitution in COL5A1 causes mild classical Ehlers-Danlos syndrome. American Journal of Medical Genetics, 2002. 109(4): p. 284-290.
123. Fernandes, H., et al., The Role of Collagen Crosslinking in Differentiation of Human Mesenchymal Stem Cells and MC3T3-E1 Cells. Tissue Engineering Part A, 2009. 15(12): p. 3857-3867.
124. Ma, W., et al., CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Experimental Neurology, 2004. 190(2): p. 276-288.
125. Mao, Y. and J.E. Schwarzbauer, Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology, 2005. 24(6): p. 389-399.
126. Drake, S.L., et al., Structural Features of Fibronectin Synthetic Peptide Fn-C/H Ii, Responsible for Cell-Adhesion, Neurite Extension, and Heparan-Sulfate Binding. Journal of Biological Chemistry, 1993. 268(21): p. 15859-15867.
127. Manton, K.J., et al., Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells, 2007. 25(11): p. 2845-2854.
128. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 2004. 6(4): p. 483-495.
129. Chang, C.F., et al., Fibronectin and pellet suspension culture promote differentiation of human mesenchymal stem cells into insulin producing cells. Journal of Biomedical Materials Research Part A, 2008. 86A(4): p. 1097-1105.
130. Jiang, F.X., et al., Laminin-1 promotes differentiation of fetal mouse pancreatic beta-cells. Diabetes, 1999. 48(4): p. 722-730.
131. Sogo, Y., et al., Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Biomedical Materials, 2007. 2(2): p. 116-123.
132. Kikkawa, Y., et al., Integrin binding specificity of laminin-10/11 : laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. Journal of Cell Science, 2000. 113(5): p. 869-876.
133. Ogawa, T., et al., The short arm of laminin gamma 2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta 4 chain. Molecular Biology of the Cell, 2007. 18(5): p. 1621-1633.
134. Klees, R.F., et al., Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Molecular Biology of the Cell, 2005. 16(2): p. 881-890.
135. Suzuki, S., et al., Effects of Extracellular Matrix on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage: Utility for Cardiovascular Tissue Engineering. Cells Tissues Organs, 2010. 191(4): p. 269-280.
136. Gil, J.E., et al., Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. Febs Letters, 2009. 583(3): p. 561-567.
137. Takebayashi, H., et al., The basic helix-loop-helix factor Olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Current Biology, 2002. 12(13): p. 1157-1163.
138. Salasznyk, R.M., et al., Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2004(1): p. 24-34.
139. Kleinman, H.K. and G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005. 15(5): p. 378-86.
140. Donovan, P.J. and J. Gearhart, The end of the beginning for pluripotent stem cells. Nature, 2001. 414(6859): p. 92-97.
141. Rosner, M.H., et al., A Pou-Domain Transcription Factor in Early Stem-Cells and Germ-Cells of the Mammalian Embryo. Nature, 1990. 345(6277): p. 686-692.
142. Carlin, R., et al., Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology, 2006. 4.
143. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
144. Zaehres, H., et al., High-Efficiency RNA Interference in Human Embryonic Stem Cells. STEM CELLS, 2005. 23(3): p. 299-305.
145. Takeda, J., S. Seino, and G.I. Bell, Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res, 1992. 20(17): p. 4613-20.
146. Rodda, D.J., et al., Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem, 2005. 280(26): p. 24731-7.
147. Masui, S., et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 2007. 9(6): p. 625-35.
148. Rowland, B.D. and D.S. Peeper, KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer, 2006. 6(1): p. 11-23.
149. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-967.
150. Komori, T., Regulation of osteoblast differentiation by transcription factors. J Cell Biochem, 2006. 99(5): p. 1233-9.
151. Otto, F., H. Kanegane, and S. Mundlos, Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat, 2002. 19(3): p. 209-16.
152. Kumagai, K., et al., The extent of degeneration of cruciate ligament is associated with chondrogenic differentiation in patients with osteoarthritis of the knee. Osteoarthritis Cartilage, 2012. 20(11): p. 1258-67.
153. Ng, L.J., et al., SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol, 1997. 183(1): p. 108-21.
154. Zhao, Q., et al., Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn, 1997. 209(4): p. 377-86.
155. Wright, E., et al., The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet, 1995. 9(1): p. 15-20.
156. Murakami, S., et al., Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1113-8.
157. Chou, Y.H., et al., Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell, 1990. 62(6): p. 1063-71.
158. Chou, Y.H., et al., The relative roles of specific N- and C-terminal phosphorylation sites in the disassembly of intermediate filament in mitotic BHK-21 cells. J Cell Sci, 1996. 109 ( Pt 4): p. 817-26.
159. Chou, Y.H., et al., Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell, 2003. 14(4): p. 1468-78.
160. Eliasson, C., et al., Intermediate filament protein partnership in astrocytes. J Biol Chem, 1999. 274(34): p. 23996-4006.
161. Kachinsky, A.M., J.A. Dominov, and J.B. Miller, Intermediate filaments in cardiac myogenesis: nestin in the developing mouse heart. J Histochem Cytochem, 1995. 43(8): p. 843-7.
162. Michalczyk, K. and M. Ziman, Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol, 2005. 20(2): p. 665-71.
163. Otterbein, L.R., P. Graceffa, and R. Dominguez, The crystal structure of uncomplexed actin in the ADP state. Science, 2001. 293(5530): p. 708-11.
164. Doherty, G.J. and H.T. McMahon, Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys, 2008. 37: p. 65-95.
|