參考文獻 |
1. Andrews, P.W., et al., Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans, 2005. 33(Pt 6): p. 1526-30.
2. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
4. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med, 2005. 11(2): p. 228-32.
5. Wiedemann, P.M., et al., The future of stem-cell research in Germany. A Delphi study. EMBO Rep, 2004. 5(10): p. 927-31.
6. Diehn, M., R.W. Cho, and M.F. Clarke, Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol, 2009. 19(2): p. 78-86.
7. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
8. Taylor, R., Human Biotechnology as Social Challenge: An Interdisciplinary Introduction to Bioethics. Human Reproduction and Genetic Ethics, 2010. 14(1): p. 40.
9. Campbell, K.H., et al., Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996. 380(6569): p. 64-6.
10. Palmarini, M., A veterinary twist on pathogen biology. PLoS Pathog, 2007. 3(2): p. e12.
11. Shiels, P.G., et al., Analysis of telomere lengths in cloned sheep. Nature, 1999. 399(6734): p. 316-7.
12. Tachibana, M., et al., Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 2013. 153(6): p. 1228-38.
13. Chung, Y.G., et al., Human Somatic Cell Nuclear Transfer Using Adult Cells. Cell Stem Cell, 2014.
14. Zhang, Y., et al., A poor imitation of a natural process: a call to reconsider the iPSC engineering technique. Cell Cycle, 2012. 11(24): p. 4536-44.
15. Klimanskaya, I., et al., Human embryonic stem cell lines derived from single blastomeres. Nature, 2006. 444(7118): p. 481-5.
16. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
17. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
18. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
19. Ratajczak, M.Z., et al., A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia, 2007. 21(5): p. 860-7.
20. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
21. Subrammaniyan, R., et al., Application of autologous bone marrow mononuclear cells in six patients with advanced chronic critical limb ischemia as a result of diabetes: our experience. Cytotherapy, 2011. 13(8): p. 993-9.
22. Narasipura, S.D., et al., P-Selectin coated microtube for enrichment of CD34+ hematopoietic stem and progenitor cells from human bone marrow. Clin Chem, 2008. 54(1): p. 77-85.
23. Terai, S., et al., Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells, 2006. 24(10): p. 2292-8.
24. Lin, C.S., et al., Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol, 2010. 25(6): p. 807-15.
25. Smith, A.J., et al., Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med, 2012. 1(10): p. 709-18.
26. Goldring, C.E., et al., Assessing the safety of stem cell therapeutics. Cell stem cell, 2011. 8(6): p. 618-628.
27. Katayama, Y., et al., Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 2006. 124(2): p. 407-421.
28. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
29. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89.
30. Aguilar, H.N. and B.F. Mitchell, Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update, 2010. 16(6): p. 725-44.
31. Kovacs, M., et al., Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 2004. 279(34): p. 35557-35563.
32. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-90.
33. Michel, G., et al., The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 2010. 188(1): p. 82-97.
34. Abedin, M. and N. King, Diverse evolutionary paths to cell adhesion. Trends Cell Biol, 2010. 20(12): p. 734-42.
35. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
36. Meng, G., et al., Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev, 2010. 19(4): p. 547-56.
37. Fu, X., et al., Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods, 2011. 17(9): p. 927-37.
38. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-8.
39. Hayashi, Y., et al., Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One, 2010. 5(11): p. e14099.
40. Swistowski, A., et al., Xeno-Free Defined Conditions for Culture of Human Embryonic Stem Cells, Neural Stem Cells and Dopaminergic Neurons Derived from Them. Plos One, 2009. 4(7).
41. Hernandez, D., L. Ruban, and C. Mason, Feeder-Free Culture of Human Embryonic Stem Cells for Scalable Expansion in a Reproducible Manner. Stem Cells and Development, 2011. 20(6): p. 1089-1098.
42. Sugii, S., et al., Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3558-63.
43. Kaupisch, A., et al., Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease. J Cardiovasc Transl Res, 2012. 5(5): p. 605-17.
44. Tsutsui, H., et al., An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun, 2011. 2: p. 167.
45. Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
46. Yoon, T.M., et al., Human embryonic stem cells (hESCs) cultured under distinctive feeder-free culture conditions display global gene expression patterns similar to hESCs from feeder-dependent culture conditions. Stem Cell Rev, 2010. 6(3): p. 425-37.
47. Hughes, C.S., et al., Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics, 2011. 11(20): p. 3983-3991.
48. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
49. Rajala, K., et al., Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Human Reproduction, 2007. 22(5): p. 1231-1238.
50. Manton, K.J., et al., A Chimeric Vitronectin: IGF-I Protein Supports Feeder-Cell-Free and Serum-Free Culture of Human Embryonic Stem Cells. Stem Cells and Development, 2010. 19(9): p. 1297-1305.
51. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
52. Heng, B.C., et al., Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces. Stem Cells and Development, 2012. 21(10): p. 1701-1715.
53. Yap, L.Y.W., et al., Defining a Threshold Surface Density of Vitronectin for the Stable Expansion of Human Embryonic Stem Cells. Tissue Engineering Part C-Methods, 2011. 17(2): p. 193-207.
54. Prowse, A.B., et al., Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials, 2010. 31(32): p. 8281-8.
55. Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. Fa132-Fa142.
56. Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6).
57. Kim, B.S., et al., Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011. 36(2): p. 238-268.
58. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
59. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
60. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology, 2010. 146(3): p. 143-146.
61. Harb, N., T.K. Archer, and N. Sato, The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells. Plos One, 2008. 3(8).
62. Carlson, A.L., et al., Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments. Faseb Journal, 2012. 26(8): p. 3240-3251.
63. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology, 2010. 10.
64. Stephenson, E., et al., Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nature Protocols, 2012. 7(7): p. 1366-1381.
65. Lu, H.F., et al., A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials, 2012. 33(8): p. 2419-2430.
66. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
67. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
68. Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature Protocols, 2011. 6(7): p. 1037-1043.
69. Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
70. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
71. Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013. 4.
72. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nature Biotechnology, 2005. 23(6): p. 699-708.
73. Gumbiner, B.M., Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol, 2005. 6(8): p. 622-34.
74. Ullmann, U., et al., Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod, 2007. 13(1): p. 21-32.
75. Dedhar, S., Cell-substrate interactions and signaling through ILK. Current Opinion in Cell Biology, 2000. 12(2): p. 250-256.
76. Pashuck, E.T. and M.M. Stevens, Designing Regenerative Biomaterial Therapies for the Clinic. Science Translational Medicine, 2012. 4(160).
77. Liu, Y.X., et al., Modified Hyaluronan Hydrogels Support the Maintenance of Mouse Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Macromolecular Bioscience, 2012. 12(8): p. 1034-1042.
78. Li, Z.S., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-412.
79. Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
80. Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11298-303.
81. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 2010. 9(9): p. 768-778.
82. Mahlstedt, M.M., et al., Maintenance of Pluripotency in Human Embryonic Stem Cells Cultured on a Synthetic Substrate in Conditioned Medium. Biotechnology and Bioengineering, 2010. 105(1): p. 130-140.
83. Nie, Y., et al., Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers. Biotechnology Progress, 2009. 25(1): p. 20-31.
84. Kim, S., et al., A novel culture technique for human embryonic stem cells using porous membranes. Stem Cells, 2007. 25(10): p. 2601-2609.
85. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. Journal of Biotechnology, 2008. 133(1): p. 146-153.
86. Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-4.
87. Higuchi, A., et al., Temperature-dependent cell detachment on Pluronic gels. Biomacromolecules, 2005. 6(2): p. 691-6.
88. Tamura, A., et al., Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012. 33(15): p. 3803-12.
89. Saito, T., et al., Reversal of Diabetes by the Creation of Neo-Islet Tissues Into a Subcutaneous Site Using Islet Cell Sheets. Transplantation, 2011. 92(11): p. 1231-1236.
90. Wei, H., et al., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910.
91. Kraehenbuehl, T.P., R. Langer, and L.S. Ferreira, Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods, 2011. 8(9): p. 731-6.
92. Phillips, B., et al., Attachment and growth of human embryonic stem cells on microcarriers (vol 138, pg 24, 2008). Journal of Biotechnology, 2009. 139(2): p. 194-194.
93. Janssens, S., et al., Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 2006. 367(9505): p. 113-121.
94. Serra, M., et al., Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8): p. e23212.
95. Steiner, D., et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol, 2010. 28(4): p. 361-4.
96. Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
97. Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
98. Zweigerdt, R., et al., Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011. 6(5): p. 689-700.
99. Amit, M., et al., Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nature Protocols, 2011. 6(5): p. 572-579.
100. Larijani, M.R., et al., Long-Term Maintenance of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells in Suspension. Stem Cells and Development, 2011. 20(11): p. 1911-1923.
101. Marinho, P.A.N., et al., Xeno-Free Production of Human Embryonic Stem Cells in Stirred Microcarrier Systems Using a Novel Animal/Human-Component-Free Medium. Tissue Engineering Part C-Methods, 2013. 19(2): p. 146-155.
102. Chen, A.K., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res, 2011. 7(2): p. 97-111.
103. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
104. Serra, M., et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Journal of Biotechnology, 2010. 148(4): p. 208-215.
105. Oh, S.K.W., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2009. 2(3): p. 219-230.
106. Bardy, J., et al., Microcarrier Suspension Cultures for High-Density Expansion and Differentiation of Human Pluripotent Stem Cells to Neural Progenitor Cells. Tissue Engineering Part C-Methods, 2013. 19(2): p. 166-180.
107. Storm, M.P., et al., Three-Dimensional Culture Systems for the Expansion of Pluripotent Embryonic Stem Cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
108. Lock, L.T. and E.S. Tzanakakis, Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture. Tissue Engineering Part A, 2009. 15(8): p. 2051-2063.
109. Wilson, J.L. and T.C. McDevitt, Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnology and Bioengineering, 2013. 110(3): p. 667-682.
110. Ko, D.Y., et al., Recent progress of in situ formed gels for biomedical applications. Progress in Polymer Science, 2013. 38(3-4): p. 672-701.
111. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126.
112. Huang, X.B., et al., Microenvironment of alginate-based microcapsules for cell culture and tissue engineering. Journal of Bioscience and Bioengineering, 2012. 114(1): p. 1-8.
113. Jang, M., et al., A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials, 2013. 34(14): p. 3571-3580.
114. Lutolf, M.R., et al., Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology, 2003. 21(5): p. 513-518.
115. Higuchi, A., et al., Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev, 2013. 113(5): p. 3297-328.
116. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
117. Robinton, D.A. and G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481(7381): p. 295-305.
118. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014.
119. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
120. O′Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-16.
121. Kokubu, F., et al., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J, 1988. 7(11): p. 3413-22.
122. Pera, M.F., B. Reubinoff, and A. Trounson, Human embryonic stem cells. J Cell Sci, 2000. 113 ( Pt 1): p. 5-10.
123. Andrews, P.W., et al., Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma, 1984. 3(1): p. 33-9.
124. Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
125. Xu, C., et al., Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 2005. 23(3): p. 315-23.
126. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
127. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
128. Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
129. Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
130. Yamanaka, S., et al., Pluripotency of embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 5-22.
131. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
132. Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
133. Sjogren-Jansson, E., et al., Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn, 2005. 233(4): p. 1304-14.
134. Ameen, C., et al., Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol, 2008. 65(1): p. 54-80.
135. Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6.
136. Peiffer, I., et al., Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations. Stem Cells Dev, 2008. 17(3): p. 519-33.
137. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun, 2008. 375(1): p. 27-32.
138. Zhou, J., et al., mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A, 2009. 106(19): p. 7840-5.
139. Su, Z., et al., Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res, 2008. 14(19): p. 6207-17.
140. Li, Z., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-12.
141. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells, 2008. 26(9): p. 2257-65.
142. Rosler, E.S., et al., Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn, 2004. 229(2): p. 259-74.
143. Odell, I.D. and D. Cook, Immunofluorescence techniques. J Invest Dermatol, 2013. 133(1): p. e4.
144. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
145. Niesters, H.G.M., Quantitation of viral load using real-time amplification techniques. Methods, 2001. 25(4): p. 419-429.
146. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001. 25(4): p. 402-408.
147. Kumar, S.S., et al., The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials, 2013. 34(31): p. 7632-44.
|