博碩士論文 101324070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.14.252.84
姓名 李明勳(Ming-Shun Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 自組裝奈米球微影法製備規則有序排列支鐵矽化物奈米點陣列之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 已知金屬矽化物具備高熔點、高熱穩定性及電阻率低等優點,在積體電路製程及電子元件上金屬矽化物已被積極地應用且愈來愈普遍。其中β-FeSi2除了是一種在常溫下具有直接能矽的半導體之外還同時具有諸多優點以及可應用領域,雖然已吸引了許多專家學者投入對其的研究,不過都由於單晶的β-FeSi2製作不易,而無法提供其穩定的優異性質於實際應用端。然而製作出大面積規則有序排列的金屬奈米點來探討其與基材間的相變化或是性質變化將具有更高可信度已成為共識,考慮本實驗室具備製作大面積有序排列金屬奈米點的能力,以及金屬奈米點陣列比起大面積金屬薄膜能與來自更多方向的矽基材進行反應之概念,期待以此不同之反應機制嘗試改善β-FeSi2的結晶性。



本實驗成功地利用自組裝奈米球微影法製備出大面積且規則排列的多晶β-FeSi2奈米顆粒於(001)矽單晶基材上。透過TEM的電子繞射圖中之繞射環鑑定,搭配在192及246.5 cm-1的拉曼散射光譜訊號證實了β-FeSi2的生成。經由實驗結果推論,本研究要能做出β-FeSi2之溫度條件至少要高於800 oC,由於太高溫會生成SiOx奈米線,若在900 oC的退火溫度嘗試改變退火持溫時間搭配製作適當厚度的鐵金屬點陣列,將更有機會生成單晶的β-FeSi2。

摘要(英) Known metal silicide with a high melting point, high thermal stability and low resistivity, etc., metal silicide has been actively and increasingly widespread application in the integrated circuit manufacturing process and electronic components. Where β-FeSi2 addition to being capable of having a direct semiconductor silicon at room temperature than at the same time also has many advantages and can be applied in the field, although many experts and scholars have been attracted into their studies, but are due to the single crystal β-FeSi2 production is not easy, but it can not provide a stable excellent properties for practical application side. However, the rules make a big area of metal nano-ordered phase change point to explore its nature and the substrate or between the change will have higher credibility has become a consensus, consider this laboratory has ordered production of large area the ability of metal nano dots, and metal nano dot array can be compared to a large area of the metal film and the silicon substrate to the response of the concept more direction from progresses, we expect this reaction mechanism is different from trying to improve the crystallinity of the β-FeSi2.



The experiment successfully using self-assembled nano-lithography ball Preparation of a polycrystalline β-FeSi2 nano-particles large and regular arrangement of (001) silicon single crystal substrate. Identified by TEM electron diffraction ring in the diffraction pattern, Raman scattering spectra with signals 192 and 246.5 cm-1 confirmed the generation of β-FeSi2. By inference results of this study should be able to make the temperature conditions of at least β-FeSi2 than 800 oC, due to the high temperature into SiOx nanowires, if the annealing temperature at 900 oC try to change the annealing temperature and time with the production of appropriate support ferrous metal dot arrays thickness, will have the opportunity to generate a single crystal of β-FeSi2.

關鍵字(中) ★ 鐵矽化物
★ 自組裝
★ 微影術
關鍵字(英)
論文目次 摘要 I

Abstract II

致謝 III

第一章 簡介 1

1-1 前言 1

1-2 各種奈米球自組裝技術 2

1-2-1 自然滴製法(Drop-casting) 2

1-2-2 旋轉塗佈法(Spin-coating) 3

1-2-3 液面自組裝轉附技術 3

1-2-4 電場促進自組裝技術 4

1-3 利用奈米球微影術製備各種奈米結構 5

1-3-1 金屬薄膜沉積技術 5

1-3-2 電化學沉積技術 6

1-3-3 反應離子蝕刻技術 7

1-3-4 前驅物鑄造法 7

1-4 金屬矽化物 8

1-4-1 金屬矽化物的應用及製程 8

1-4-2 鐵金屬矽化物 10

1-5 研究動機 11

第二章 實驗步驟 12

2-1 奈米球模板及金屬矽化物奈米點陣列之製備 12

2-1-1 基材前處理 12

2-1-2 奈米球膠體溶液配製 13

2-1-3 製備自組裝奈米球陣列模板 13

2-1-4 金屬薄膜鍍製 14

2-1-5 奈米球舉離 14

2-1-6 退火熱處理 14

2-2 分析儀器與鑑定 15

2-2-1 掃描式電子顯微鏡(SEM) 15

2-2-2 原子力顯微鏡(AFM) 15

2-2-3 穿透式電子顯微鏡(TEM) 16

2-2-4 拉曼光譜儀 17

第三章 結果與討論 18

3-1 奈米球陣列模板之製備 18

3-2 鐵金屬及鐵金屬矽化物奈米點陣列 20

3-2-1 鐵金屬及其矽化物奈米點陣列之形貌觀察 20

3-2-2 鐵金屬奈米點陣列與(001) Si基材之界面反應 22

第四章 結論 27

參考文獻 28

表目錄 38

圖目錄 42



參考文獻 [1] S. Ciraci, and I. P. Batra, "Theory of the Quantum Size Effect in Simple Metals," Physical Review B 33 (1986) 4294-4297.

[2] Y. Liu, L. Zhong, Z. Peng, Y. Song, and W. Chen, "Field Emission Properties of One-Dimensional Single CuO Nanoneedle by in Situ Microscopy," Journal of Materials Science 45 (2010) 3791-3796.

[3] C. Wei, C. I. Wang, F. C. Tai, K. Ting, and R. C. Chang, "The Effect of CNT Content on the Surface and Mechanical Properties of CNTs Doped Diamond Like Carbon Films," Diamond and Related Materials 19 (2010) 562-566.

[4] J. Shirakashi, "Scanning Probe Microscope Lithography at the Micro-and Nano-Scales," Journal of Nanoscience and Nanotechnology 10 (2010) 4486-4494.

[5] T. Yasuda, S. Yamasaki, and S. Gwo. "Nanoscale Selective-Area Epitaxial Growth of Si Using an Ultrathin SiO2/Si3Ni4 Mask Patterned by an Atomic Force Microscope," Applied Physics Letters 77 (2000) 3917-3919.

[6] J. I. Martın, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered Magnetic Nanostructures: Fabrication and Properties," Journal of Magnetism and Magnetic Materials 256 (2003) 449-501.

[7] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, "Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials," Materials Research Society Symposium 636 (2001) D4.8.1-6.

[8] M. Ratner, and D. Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea, " Prentice Hall Professional Chapter 4 (2003).

[9] E. Miyauchi, H. Arimoto, and H. Kitada, "Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes, " Nuclear Instruments and Methods B39 (1989) 515-520.

[10] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, "Nanosphere lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays," The Journal of Physical Chemistry B 103 (1999) 3854-3863.

[11] H. W. Deckman, and J. H. Dunsmuir, "Natural Lithography," Applied Physics Letters 41 (1982) 377-379.

[12] Y. B. Zheng, S. J. Wang, and Y. H. Wang, "Fabrication of Tunable Nanostructure Arrays Using Ion-Polishing-Assisted Nanosphere Lithography," Journal of Applied Physics 99 (2006) 034308.

[13] Z. Y. Ren, X. M. Zhang, J. J. Zhang, X. Li, and B. Yang, "Building Cavities in Microspheres and Nanospheres," Nanotechnology 20 (2009) 065305.

[14] M. J. Xu, N. Lu, H. B. Xu, D. P. Qi, Y. D. Wang, and L. F. Chi, "Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography," Langmuir 25 (2009) 11216-11220.

[15] E. Géraud, V. Prévot, J. Ghanbaja, and F. Leroux, "Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template," Chemistry of Materials 18 (2006) 238-240.

[16] Y. Sun, and H. H. Wang, "High‐Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles," Advanced Materials 19 (2007) 2818-2823.

[17] H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, "Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography," Microelectronic Engineering 86 (2009) 850-852.

[18] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, "Broadband Antireflective Poly-Si Nanosponge for Thin Film Solar Cells," Optics Express 17 (2009) 4646-4651.

[19] M. Kostylevl, R. Magaraggia, F. Y. Ogrin, E. Sirotkin, V. F. Mescheryakov, N. Ross, and R. L. Stamps, "Ferromagnetic Resonance Investigation of Macroscopic Arrays of Magnetic Nanoelements Fabricated Using Polysterene Nanosphere Lithographic Mask Technique," IEEE Transactions on Magnetics 44 (2008) 2741-2744.

[20] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8 (1992) 3183-3190.

[21] R. Micheletto, H. Fukuda, and M. Ohtsu, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11 (1995) 3333-3336.

[22] T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, "Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers." Nature Materials 5 (2006) 265-270.

[23] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, "Fabrication of a Large Area Monolayer of Silica Particles on a Sapphire Substrate by a Spin Coating Method," Colloids and Surfaces A: Physicochemical and Engineering Aspects 297 (2007) 71-78.

[24] J. C. Hulteen, and R. P. Van Duyne, "Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces," Journal of Vacuum Science & Technology A 13 (1995) 1553-1558.

[25] J. Chen, P. Dong, D. Di, C. Wang, H. Wang, J. Wang, and X. Wu, "Controllable Fabrication of 2D Colloidal-Crystal Films with Polystyrene Nanospheres of Various Diameters by Spin-Coating," Applied Surface Science 270 (2013) 6-15.

[26] W. C. Chiu, and B. Y. Tsui, "Investigation into the Performance of CNT-Interconnects by Spin Coating Technique," PROCEEDINGS OF THE 2013 IEEE 5TH INTERNATIONAL NANOELECTRONICS CONFERENCE (2013) 240-241.

[27] J. Rybczynski, U. Ebels, and M. Giersig, "Large-Scale, 2D Arrays of Magnetic Nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects 219 (2003) 1-6.

[28] E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, "Macroscopic Ordering of Polystyrene Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface," Langmuir 26 (2010) 10677-10683.

[29] W. D. Ruan, Z. C. Lu, N. Ji, C. X. Wang, B. Zhao, and J. H. Zhang, "Facile Fabrication of Large Area Polystyrene Colloidal Crystal Monolayer via Surfactant-Free Langmuir-Blodgett Technique," Chemical Research in Chinese Universities 23 (2007) 712-714.

[30] Y. Guo, D. Tang, Y. Du, B. Liu, "Controlled Fabrication of Hexagonally Close-Packed Langmuir–Blodgett Silica Particulate Monolayers from Binary Surfactant and Solvent Systems," Langmuir 29 (2013) 2849-2858.

[31] R. Xie, and X. Y. Liu, "Electrically Directed On-Chip Reversible Patterning of Two-Dimensional Tunable Colloidal Structures," Advanced Functional Materials 18 (2008) 802-809.

[32] J. Pokki, O. Ergeneman, K. M. Sivaraman, B. Özkale, M. A. Zeeshan, T. Lühmann, B. J. Nelson, and S. Pané, "Electroplated Porous Polypyrrole Nanostructures Patterned by Colloidal Lithography for Drug-Delivery Applications," Nanoscale 4 (2012) 3083-3088.

[33] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, "Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing," The Journal of Physical Chemistry B 106 (2002) 1898-1902.

[34] A. Wellner, P. R. Preece, J. C. Fowler, and R. E. Palmer, "Fabrication of Ordered Arrays of Silicon Nanopillars in Silicon-On-Insulator Wafers," Microelectronic Engineering 57 (2001) 919-924.

[35] J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, and Z. F. Ren, "Formation of Super Arrays of Periodic Nanoparticles and Aligned ZnO Nanorods-Simulation and Experiments," Nano Letters 4 (2004) 2037-2040.

[36] H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, and M. Zacharias, "Well-Ordered ZnO Nanowire Arrays on GaN Substrate Fabricated via Nanosphere Lithography," Journal of Crystal Growth 287 (2006) 34-38.

[37] J. Aizpurua, G. W. Bryant, P. Hanarp, D. S. Sutherland, M. Kall, and F. J. Garcia de Abajo, "Tunable Optical Excitations in Gold Nanorings," Physical Review Letters 90 (2003) 057401-1-4.

[38] Y. J. Ma, J. Cui, Y. L. Fan, Z. Y. Zhong, and Z. M. Jiang, "Ordered GeSi Nanorings Grown on Patterned Si (001) Substrates," Nanoscale Research Letters 6 (2011) 205-211.

[39] J. Liu, H. Dong, Y. Li, P. Zhan, M. Zhu, and Z. Wang, "A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology," Japanese Journal of Applied Physics 45 (2006) 582-584.

[40] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, "Large-Scale Fabrication of Ordered Nanobowl Arrays," Nano Letters 4 (2004) 2223-2226.

[41] J. H. Lee, Y. W. Chung, M. H. Hon, and I. C. Leu, "Fabrication of Tunable Pore Size of Nickel Membranes by Electrodeposition on Colloidal Monolayer Template," Journal of Alloys and Compounds 509 (2011) 6528-6531.

[42] G. Duan, W. Cai, Y. Li, Z. Li, B. Cao, and Y. Luo, "Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer," The Journal of Physical Chemistry B110 (2006) 7184-7188.

[43] G. Duan, W. Cai, Y. Luo, Z. Li, and Y. Lei, "Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition," The Journal of Physical Chemistry B 110 (2006) 15729-15733.

[44] M. A. Ghanem, P. N. Bartlett, P. de Groot, and A. Zhukov, "A Double Templated Electrodeposition Method for the Fabrication of Arrays of Metal Nanodots," Electrochemistry Communications 6 (2004) 447-453.

[45] M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. de Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, "Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-Assembly," Journal of Applied Physics 100 (2006) 113720-1-5.

[46] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hon, "Fabrication of Various Nickel Nanostructures by Manipulating the One-Step Electrodeposition Process," Journal of the Electrochemical Society 154 (2007) E77-E83.

[47] Z. Chen, P. Zhan, Z. L. Wang, J. H. Zhang, W. Y. Zhang, N. B. Ming, C. T. Chan, and P. Sheng, "Two‐and Three‐Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating," Advanced Materials 16 (2004) 417-422.

[48] K. Seeger, and R. E. Palmer, "Fabrication of Ordered Arrays of Silicon Nanopillars," Journal of Physics D: Applied Physics 32 (1999) L129.

[49] A. V. Whitney, B. D. Myers, and R. P. Van Duyne, "Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography," Nano Letters 4 (2004) 1507-1511.

[50] S. M. Weekes,.F. Y. Ogrin, and W. A. Murray, "Fabrication of Large-Area Ferromagnetic Arrays Using Etched Nanosphere Lithography," Langmuir 20 (2004) 11208-11212.

[51] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, "Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir–Blodgett Assembly and Etching," Applied Physics Letters 93 (2008) 133109.

[52] H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, "Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography," Microelectronic Engineering 86 (2009) 850-852.



[53] C. W. Kuo, J. Y. Shiu, and P. Chen, "Size-and Shape-Controlled Fabrication of Large -Area Periodic Nanopillar Arrays," Chemistry of Materials 15 (2003) 2917-2920.

[54] X. Li, and P. W. Bohn, "Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Applied Physics Letters 77 (2000) 2572-2574.

[55] E. Garnett, and P. Yang, "Light Trapping in Silicon Nanowire Solar Cells," Nano Letters 10 (2010) 1082-1087.

[56] Y. Li, W. P. Cai, B. Cao, G. T. Duan, C. C. Li, F. Q. Sun, and H. B. Zeng, "Morphology -Controlled 2D Ordered Arrays by Heating-Induced Deformation of 2D Colloidal Monolayer," Journal of Materials Chemistry 16 (2006) 609-612.

[57] Y. Li, W. P. Cai, G. T. Duan, F. Q. Sun, B. Q. Cao, and F. Lu, "2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films," Materials Letters 59 (2005) 276-279.

[58] Y. Li, W. P. Cai, G. T. Duan, B. Q. Cao, F. Q. Sun, and F. Lu, "Superhydrophobicity of 2D ZnO Ordered Pore Arrays Formed by Solution-Dipping Template Method," Journal of Colloid and Interface Science 287 (2005) 634–639.

[59] F. Q. Sun, W. P. Cai, Y. Li, B. Q. Cao, Y. Lei, and L. D. Zhang, "Morphology -Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays," Advanced Functional Materials 14 (2004) 283-288.

[60] Y. Ohishi, K. Kurosaki, T. Suzuki, H. Muta, S. Yamanaka, N. Uchida, T. Tada, and T. Kanayama, "Synthesis of Silicon and Molybdenum–Silicide Nanocrystal Composite Films Having Low Thermal Conductivity," Thin Solid Films 534 (2013) 238-241.

[61] G. C.,Patil, and S. Qureshi, "A Comparative Study on Analog/RF Performance of Pt-Germanide and Pt-Silicide Schottky Barrier pMOSFETs," Electron Devices and Solid State Circuit IEEE (2012).

[62] J. Y. Huang, K. L. Yeo, A. Kumar, and C. S. Seet, "Impact of Surface Preparation on Ni (Pt) Silicide Oxidation," Electrochemical and Solid-State Letters 14 (2011) H42-H45.

[63] Y. K. Chae, Y. Egashira, Y. Shimogaki, K. Sugawara, H. Komiyama, "Experimental and Numerical Analysis of Rapid Reaction to Initiate the Radical Chain Reactions in WSix CVD," Thin Solid Films 320 (1998) 151-158.

[64] S. Zhou, X. H. Liu, Y. J. Lin, and D. W. Wang, "Rational Synthesis and Structural Characterizations of Complex TiSi2 Nanostructures," Chemistry of Materials 21 (2009) 1023-1027.

[65] K. Maex, G. Ghosh, L. Delaey, V. Probst, P. Lippens, L. Van den hove, and R. F. De Keersmaecker, "Stability of As and B Doped Si with Respect to Overlaying CoSi2 and TiSi2 Thin Films," Journal of Materials Research 4 (1989) 1209-1217.

[66] M. Sawada, H. Katsumata, Y. Tomokuni, and S. Uekusa, "Structural and Electrical Properties of Co-Doped β-FeSi2 Thin Films Prepared by RF Magnetron Sputtering," Physics Procedia 23 (2012) 9-12.

[67] M. H. Juang, Y. S. Peng, and B. J. Liu, "Formation of Microcrystalline-Si Thin Film Transistors by Using Self-Aligned Nickel-Silicided Process," Thin Solid Films 519 (2011) 3902-3905.

[68] A. Fleurence, G. Agnus, T. Maroutian, B. Bartenlian, and P. Beauvillain, "Au-Assisted Co Silicide Island Growth on Si (111)," Applied Surface Science 258 (2012) 9675-9679.

[69] M. L. Guo, X. H. Xia, Y. Gao, G. W. Jiang, Q. R. Deng, and G. S. Shao, "Self-Aligned TiO2 Thin Films with Remarkable Hydrogen Sensing Functionality," Sensors and Actuators B: Chemical 171 (2012) 165-171.

[70] K. L. Wang, T. C. Holloway, R. F Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tasch Jr, "Composite TiSi2/n+ Poly-Si Low-Resistivity Gate Electrode and Interconnect for VLSI Device Technology," IEEE Journal of Solid-State Circuits 17 (1982) 177-183.

[71] D. G. Choi, S. Kim, E. Lee, and S. M. Yang, "Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks," Journal of the American Chemical Society 127 (2005) 1636-1637.

[72] L. J. Chen, J. W. Mayer, and K. N. Tu, "Formation and Structure of Epitaxial Silicides on Silicon," Thin Solid Films 93 (1982) 135-141.

[73] B. Y. Tsui, and C. M. Lee, "Thermal Stability of Nickel Silicide and Shallow Junction Electrical Characteristics with Carbon Ion Implantation," Japanese Journal of Applied Physics 49 (2010) 04DA04.

[74] D. Z. Chi, "Semiconducting Beta-Phase FeSi2 for Light Emitting Diode Applications: Recent Developments, Challenges, and Solutions," Thin Solid Films 537 (2013) 1-22.

[75] M. C. Bost, and J. E. Mahan, "Optical Properties of Semiconducting Iron Disilicide Thin Films," Journal of Applied Physics 58 (1985) 2696-2703.

[76] T. D. Hunt, K. J. Reeson, K. P. Homewood, S. W. Teon, R. M. Gwilliam, and B. J. Sealy, "Optical Properties and Phase Transformations in α and β Iron Disilicide Layers," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 84 (1994) 168-171.

[77] S. Chu, T. Hirohada, M. Kuwabara, H. Kan, and T. Hiruma, "Time-Resolved 1.5 µm-Band Photoluminescence of Highly Oriented β-FeSi2 Films Prepared by Magnetron-Sputtering Deposition," Japanese Journal of Applied Physics 43 (2004) L127-L129.

[78] K. P. Homewood, K. J. Reeson, R. M. Gwilliam, A. K. Kewell, M. A. Lourenco, G. Shao, Y. L. Chen, J. S. Sharpe, C. N. McKinty, T. Butler, "Ion Beam Synthesized Silicides: Growth, Characterization and Devices," Thin Solid Films 381 (2001) 188-193.

[79] T. Suemasu, K. Takakura, C. Li, Y. Ozawa, Y. Kumagai, and F. Hasegawa, "Epitaxial Growth of Semiconducting β-FeSi2 and its Application to Light-Emitting Diodes," Thin Solid Films 461 (2004) 209-218.

[80] M. Takauji, C. Li, T. Suemasu, and F. Hasegawa, "Fabrication of p-Si/β-FeSi2/n-Si Double-Heterostructure Light-Emitting Diode by Molecular Beam Epitaxy." Japanese journal of applied physics 44.4S (2005): 2483.

[81] E. Belyaev, S. Mamylov, and O. Lomovsky, "Mechanochemical Synthesis and Properties of Thermoelectric Material β-FeSi2," Journal of Materials Science 35 (2000) 2029-2035.

指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明