摘要(英) |
This study mainly research performance enhancement and aberration measurement of adaptive fluidic lens and electrically tunable lens.
One specific kind of electrically tunable lenses is utilizing curvature change via adjusting input currents which electromagnetically exerts pressure on liquid volume to achieve variable-focusing properties. Nevertheless, the nature of curvature change and refractive index mismatch causes inherent spatial aberrations that severely degrade image quality. The novelty of the presented method lies in the experimental study of optical aberrations such as root mean square (RMS), Strehl ratio and Zernike coefficients induced from electrically tunable lenses and use of adaptive optics to compensate for the wavefront errors. The optical properties of electrically tunable lens are quantitatively characterized by Shack-Hartmann measurements. Adaptive optics based scheme is demonstrated for the current range 78 to 95mA, resulting in a substantial reduction of the wavefront errors from 0.55, 0.53 to 0.22, 0.2μm, respectively, corresponding to the focal power tunability of -2.52 to 0.2 diopters. It is experimentally showed that defocus (Z5) aberration is the most significant one since the changes of lens curvature varies in proportional with changing currents, and can be significantly improved from 0.328μm to 0.156μm with adaptive optics. Similar improvements can be found in piston (Z₁)/ tip (Z₂)/ tilt (Z₃) aberrations with the integration of adaptive optics.
We use Adaptive optics system to generate aberration, and then we use electrically tunable lens to correct it. Electrically tunable lens based scheme is demonstrated for the Z₁=0.3μm, Z₁=-0.3μm, Z5=0.3μm and Z5=-0.3μm, resulting in a substantial reduction of the wavefront errors from 0.5, 0.4, 0.4, 0.6μm to 0.22, 0.2, 0.2, 0.2μm, respectively.
Finally, we add self-made fluidic lenses which have concave/plano/convex membrance to change optical properties in the adaptive optics and electrically tunable lens. First, we observe the change of lens profiles and focal length. Then we use the SH sensors detect the fluidic lens which injected 0, 0.02 and 0.04ml DI water, and get RMS / PV values 1.41μm/4.12μm, 1.58μm/5.04μm and 1.73μm/3.66μm. We use the AO system to correct the aberration, get 0.77μm/2.35μm, 1.09μm/3.35μm and 1.41μm/2.96μm. But the correction is not very good, so we add electrically tunable lens in the AO system, the result is 0.35μm/3.5μm, 0.79μm/3.68μm and 0.91μm/3.88μm. We find that adding electrically tunable lens in AO system enable improve the aberration correction. |
參考文獻 |
[1] D.Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y.H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171-3173 (2003)
[2] D.Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, Y.H. Lo, “High-performance fluidic adaptive lenses, ” Appl. Opt. 43(4), 783-787 (2004)
[3] D.Y. Zhang, N. Justis, V. Lien and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194-4196 (2004)
[4] R. Marks, D. L. Mathine, J. Schwiegerling, G. Peyman and N. Peyghambarian, “Astigmatism and defocus wavefront correction via Zernike modes produced with fluidic lenses,” Appl. Opt. 48(19), 3580-3587 (2009)
[5] R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515-517 (2009)
[6] R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling and N. Peyghambarian, “Adjustable adaptive compact fluidic phoropter with no mechanical translation of lenses,” Opt. Lett. 35(5), 739-741 (2010)
[7] N. Chronis, G. L. Liu, K. H. Jeong and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370-2378 (2003)
[8] Werber A, Zappe H, “Tunable microfluidic microlenses,” Appl. Opt. 44(16):3238–3245 (2005)
[9] H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782-4790 (2009)
[10] Y. K. Fuh, M. X. Lin and Shyong Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Laser Technol. 50(12), 1677–1682 (2012)
[11] Liu, Chien-Sheng; Lin, Psang Dain, “A miniaturized low-power VCM actuator for auto-focusing applications,” Opt. Express 16(4), 2533-2540 (2008)
[12] Liu, Chien-Sheng; Lin, Psang Dain, “Miniaturized auto-focusing VCM actuator with zero holding current,” Opt. Express 17(12), 9754-9763 (2009)
[13] Y. K. Fuh and M. X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013)
[14] Y. K. Fuh, K. C. Hsu, M. X. Lin and J. R. Fan, “Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astigmatism,” Optik 124(8), 706–709 (2012)
[15] Y. K. Fuh, K. C. Hsu, M. X. Lin and J. R. Fan, “Adjustable fluidic lenses for correcting piston defocus astigmatism aberrations induced by MEMS deformable mirrors,” Microwave Opt. Technol. Lett. 54(7), 1701-1705 (2012)
[16] Y.K. Fuh, K.C. Hsu, J.R. Fan, “Roughness measurement of metals using a modified binary speckle image and adaptive optics,” Opt. Laser Technol. 50(3), 312–316 (2012)
[17] Y.K. Fuh, K.C. Hsu, J.R. Fan, “Rapid in-process measurement of surface roughness using adaptive optics,” Opt. Lett. 37(5), 848–850 (2012)
[18] Y. K. Fuh and W. C .Huang, “Adaptive optics assisted reconfigurable liquid-driven optical switch,” Opt. Commun. 300, 85–89 (2013)
[19] Y. K. Fuh, K. C. Hsu, J. R. Fan and M. X. Lin, “Induced aberrations by combinative convex concave interfaces of refractive-index-mismatch and capability of adaptive optics correction,” Microwave Opt. Technol. Lett. 53 (11), 2610–2615 (2011)
[20] H. Ren, S. T. Wu, “Optical switch using a deformable liquid droplet”, Opt. Lett. 35 (22) (2010) 3826-3828
[21] H. Yu, G. Zhou, F. S. Chau, F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology”, Opt. Lett. 34 (21) (2009) 3454-3456
[22] H. B. Yu, G. Y. Zhou, F. K. Chau, F.W. Lee, S. H. Wang, H. M. Leung, “A liquid-filled tunable double-focus microlens”, Opt. Express 17 (6) (2009) 4782-4790
[23] G. H. Feng, Y. C. Chou, “Fabrication and characterization of optofluidic flexible meniscus–biconvex lens system”, Sens. and Actua. A 156 (2009) 342-349
[24] G. H. Feng, Y. C. Chou, “Flexible meniscus biconvex lens system with fluidic controlled tunable focus applications”, Appl. Opt. 48 (18) (2009) 3284-3290
[25] K. M. Hampson, “TOPICAL REVIEW Adaptive optics and vision”, J. Mod. Optic. 55 (21) (2008) 3425–3467
[26] T. G. Bifano, J. Perreault, R. K. Mali, M. N. Horenstein, “Microelectromechanical Deformable Mirrors”, IEEE J. Sel. Top. Quant. 5 (1) (1999) 83-89
[27] Thorlab, “Operation Manual Thorlabs Instrumentation”, http://www.thorlabs.com/Thorcat/16200/16204-D01.pdf
[28] Ca´novas C, Prieto PM, Manzanera S, Mira A, Artal P, “Hybrid adaptive-optics visual simulator,” Opt Lett. 35(2),196–198(2010)
[29] Grigsby B, Lockwood C, Baumann B, Gavel D, Johnson J, Ammons SM, et al , “ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system,” Proc. SPIE. 7018, 701841-1–701841-12. (2008) |