博碩士論文 101327023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.221.97.20
姓名 劉家宏(Chia-Hung, Liu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱
(Hilbert-Huang Transform applied for Vibration Analyzing in End-Milling Operation)
相關論文
★ 氣動馬達之單軸平台定位控制★ 運用MRAC及模糊法則於氣動馬達FPGA控制器之研發
★ 球型變焦鏡頭之研究★ 影像式多目標模擬器製作與平行光顯像系統設計
★ 連續式微電鍍之影像處理方法★ 硬體迴路測試系統建構與驗證
★ 即時影像引導連續式微電鍍之立體微結構製作研究★ 公共環境下人員追蹤影像方法研究
★ 燃料電池氫氣進料控制之研究★ 形狀記憶合金對焦系統之 基因演算法及模糊控制法則
★ 公共空間光源亮度模糊控制法則之研究★ 立方衛星無線通訊系統開發
★ 多重訊號同步擷取裝置整合研究★ 應用希爾伯特黃變換(HHT)之邊際譜分析於旋轉機械的元件鬆脫故障診斷
★ 總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用★ 超音波聚焦噴墨之能量驅動與分析研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 時至今日,端銑在工業上已是一項最常被使用的加工程序,而現代工業要求產品同時具備生產速度與高品質。對切削程序來說,振動是一項影響產品品質的重要因素,影響範圍包括了加工精度以及產品的表面特徵。而為了抑制、甚至做到消除振動的影響,我們需要一個有效的方法來偵測或是重建振動信號,因此如何使用信號分析一直以來都是一個重要的議題,因為這是唯一一個幫助我們接觸真實、類比世界的手段。然而現實上,受限於技術與分析的難易度,我們經常被迫簡化或放棄一些資料中的重要信息。
希爾伯特黃由黃鍔院士在1998年提出,其具有的適應性令其在處理非線性與非穩態信號上有良好的表現。為此,本方法已經廣泛應用於聲音學、影像處理、醫學、氣象學與海洋學等各種領域之中。其包含兩個主要步驟,分別稱為經驗模態分解與希爾伯特轉換。由於相較其他常用分析法,此方法相對新穎並在實用證明例子上還不夠充分,我們需要透過實作來嘗試證明在加工方面應用的有效性。
在本研究裡,我們使用應變規與加速度來採得在端銑過程中產生的振動訊號,再透過希爾伯特黃轉換來分析、觀察其結果是否能真實呈現加工過程中所產生之各種振動現象。
摘要(英) Until today, milling process has been became one of the most commonly used processes in industry. Present industry requires not only productivity but quality of products. To the cutting process, an important factor that infects qualities, such as accuracy and surface characteristic, is vibration. To ease or even cancel the effect of vibration, we need an effective way to detect or process the vibration signal. Therefore, there is always an important issue that how we make a signal analyzing. Because this is the only way to help us to connect the real analog world with the digital world. However, most of these algorithms are forced to premise their targets are linear or stationary that may lose the information of what exactly happened in the real world.
Hilbert-Huang Transform (HHT) was proposed by Huang et al. in 1998, which is well at solving non-linear and non-stationary data due to its adaptation. Therefore, it has been used in widely used in acoustics, image processing, medical, meteorology and oceanography now. It mainly consists of two steps, empirical mode decomposition (EMD) and Hilbert transform (HT). Since this is a relatively new method and lack of theoretical proof, we need as possible as we can to prove its efficiency.
In this research, we used the HHT to analyze data which collected by strain gauge and accelerometer in end-milling process to investigate the applicability of HHT on machining process and, due to the experiment results, we had some conclusions as below:
1. The Margin spectrum which built by HHT had almost the same distribution as FFT spectrum in frequency domain, which means it could be used to get frequency domain data instead of using FFT.
2. Different with wavelet transform, HHT spectrum is able to present the change of vibration generated in cutting process in time-frequency domain and keeps the same resolution.
3. In a extra experiment, the combination of using strain gauge and HHT could also be useful to detect the tool wear. However, accelerometer data had a worse presentation than strain gauge was. The reason should be further investigated.
關鍵字(中) ★ 快速傅立葉轉換
★ 希爾伯特黃轉換
★ 震顫
★ 端銑加工
關鍵字(英) ★ Fast Fourier Transform(FFT)
★ Hilbert-Huang Transform(HHT)
★ Chatter
★ End-Milling Operation
論文目次 Contents
Page
Abstract i
Appreciation ii
Contents iii
List of Tables iv
List of Figures iv-vii
1.Introduction
1-1 General background information
1-2 Literature review 1
2.Theories & Methods
2-1 Chatter
2-2 Empirical Mode Decomposition
2-3 Ensemble Empirical Mode Decomposition
2-4 Significance Test 3
3.Experiment Setting
3-1 Equipment Setting
3-2 Natural Frequency Test 14
4.Results
4-1 Stable Cutting Conditions
4-2 Tool Wear Observation
4-3 Change in Machinability: Tribological Conditions
4-4 Change in Machinability: Diagnosis of Sudden Machining Error 19
5.Conclusion
74
6.Reference
75
參考文獻 [1] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng,Q., Yen, N.C., Tung, C.C. and Liu H.H, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, pp. 903-995, 1998.
[2] Huang, N.E., Shen, Z., and Long, S.R., ‘‘A new view of nonlinear water waves: The Hilbert spectrum.’’ Annual. Review of Fluid Mechanics, Vol. 31, pp. 417–457, 1999.
[3] ZhaohuaWu and Norden E. Huang, ‘‘Ensemble Empirical Mode Decomposition:A Noise Assisted Data Analysis Method.’’ Center for Ocean-Land-Atmosphere Studies, Journal of Sound and Vibration, Vol. 294, pp. 97-124, 2006.
[4] 陳定國,切削異常之線上診斷及控制系統之研究,中原大學,2005.
[5] 吳宏亮,遠端監控系統應用於工具機切削動態異常診控之應用研究,中原大學,2007.
[6] A.Y. Ayenu-Prah and N.O. Attoh-Okine, ‘‘Comparative study of Hilbert–Huang transform, Fourier transform and wavelet transform in pavement profile analysis’’, Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, USA, 2007
[7] 横内正洋, びびりの見分け方とその対策, 神奈川県ものづくり技術交流会, 2012.
[8] 星鉄太郎, 機械加工の振動解析-最近の診断解析ツールと安定ポケット理論の実用, 先端加工技術セミナー, 2011.
[9] 倉田祐輔, 切削加工における自励びびり振動の解析とその応用
[10] Po-Hong Wu, ‘‘Hilbert Huang Transform for Climate Analysis’’, Graduate Institute of Communication Engineering National Taiwan University,
[11] Zhaohua Wu and Norden E. Huang, ‘‘A study of the characteristics of white noise using the empirical mode decomposition method’’, Centre for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No. 173, 2004.
[12] 共和電業, ‘‘計測メモ ひずみゲージブリッジの組み方例”, http://www.kyowa-ei.com/jpn/download/technical/strain_gages/pdf_wiring_001.pdf
[13] 小松敬治, ‘‘宇宙工学ガイド 機械構造動力学 第五章 構造振動学’’, 日本機械学会 宇宙工学部門, 2004.
指導教授 黃衍任(Yean-Ren, Huang) 審核日期 2015-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明