參考文獻 |
1. W. D. Callister and D. G. Rethwisch, “Materials Science and Engineering,” John Wiley & Sons, United States of America, 9th ed. (2014)
2. 劉文海,“鋁合金車體與底盤之發展動向”,機械工業雜誌,75-84頁。(2006)
3. R. I. Stephens, A. Fatemi, R. R. Stephens and H. O. Fuchs, “Metal Fatigue in Engineering,” John Wiley & Sons, New York, 2nd ed. (2000)
4. M. Matsuishi and T. Endo, “Fatigue of Metals Subjected to Varying Stress,” Japan Society of Mechanical Engineers, Japan. (1968)
5. M. A. Miner, “Cumulative Damage in Fatigue,” Journal of Applied Mechanics, Vol. 67, pp. A159-A164. (1945)
6. T. R. Gurney, “Fatigue of Welded Structures,” Cambridge University Press, London, 2nd ed. (1979)
7. W. H. Munse, “Fatigue of Weldments-Tests, Design, and Service,” Fatigue Testing of Weldments, ASTM STP 648, D. W. Hoeppner, ed., American Society for Testing and Materials, pp. 89-112. (1978)
8. S. J. Maddox, “Fatigue Strength of Welded Structures,” Woodhead Publishing, Abington, Cambridge, 2nd ed. (1991)
9. V. N. Drew, “Fatigue Considerations in Welded Structure,” Society of Automotive Engineers, Technical paper No. 820695. (1982)
10. J. Y. Yung and F. V. Lawrence, “Analytical and Graphical Aids for the Fatigue Design of Weldments,” Society of Automotive Engineers, Technical paper No. 850803. (1985)
11. “Structural Use of Aluminium-Part 1 Code of Practice for Design,” British Standard 8118, British Standards Institution, London. (1991)
12. “Eurocode 9: Design of Aluminium Structures-Part 1-3: Structures Susceptible to Fatigue,” The European Standard EN 1999-1-3: 2007, British Standards Institution, London. (2007)
13. A. Hobbacher, “The Development of the New IIW Fatigue Recommendations,” In: Proceedings of the IIW International Conference on Performance of Dynamically Loaded Welded Structures, New York. (1997)
14. “Specifications for Aluminium Structures,” The Aluminum Association, Washington, DC. (1994)
15. “CAN/CSA-S157-M92 Strength Design in Aluminium,” Canadian Standards Association, Canada. (1993)
16. T. R. Gurney, “The Influence of Thickness on the Fatigue Strength of Welded Joints,” In: Proceedings of the 2nd International Conference on Behaviour of Offshore Structures, London. (Aug 1979)
17. S. J. Maddox, “The Effect of Plate Thickness on the Fatigue Strength of Fillet Welded Joints,” Abington Publishing, Cambridge. (1987)
18. S. J. Maddox, “Scale Effect in Fatigue of Fillet Welded Aluminium Alloys,” In: Proceedings of the 6th International Conference on Aluminium Weldments, Cleveland. (Apr 1995)
19. L. Tucker and S. Bussa, “The SAE Cumulative Fatigue Damage Test Program,” Society of Automotive Engineers, Technical paper No. 750038. (1975)
20. 黃振賢,“機械材料”,文晶圖書股份有限公司,311-331頁。(1980)
21. 賴耿陽,“非鐵金屬材料”,復漢出版社,151-168頁。(1982)
22. 趙光榮,“氬氣鎢極電銲能力本位訓練教材-鋁板平銲基本銲道銲接”,行政院勞工委員會職業訓練局。(2001)
23. 陳皇鈞,“材料科學與工程”,曉園出版社,323-335頁。(1986)
24. 鄭慶民,”熱處理行鋁合金銲接性質之研究”,國立交通大學機械工程學系,博士論文。(2005)
25. 吳政江,”鋁合金5052與6061銲後熱處理機械性質研究”,國立台灣師範大學工業教育研究所,碩士論文。(1997)
26. 董孟軒,”Sc與Cu含量對A201合金銲接特性之研究”,國立中央大學機械工程研究所,碩士論文。(2006)
27. X. H. Wang, J. T. Niu, S. K. Guan, L. J. Wang and D. F. Cheng, “Investigation on TIG Welding of SiCp-Reinforced Aluminium-Matrix Composite Using Mixed Shielding Gas and Al-Si Filler,” Materials Science and Engineering A, Vol. 499, Issues 1-2, pp. 106-110. (2009)
28. 莊弘瑋,”活性助銲劑與銲接製程參數對6061鋁合金銲道熔深能力之研究”,國立交通大學工學院精密與自動化工程學程,碩士論文。(2012)
29. 唐自勇,”A7050與A2024鋁合金異質銲接與銲後熱處理”,國立交通大學機械工程系所,碩士論文。(2013)
30. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood and P. Desmet, “Recent Development in Aluminium Alloys for the Automotive Industry,” Materials Science and Engineering A, Vol. 280, Issue 1, pp. 37-49. (2000)
31. 凌溢駿,”UNS S31200及UNS S31803雙相不銹鋼真空硬焊性質研究”,大同大學材料工程研究所,碩士論文。(2000)
32. 葉獻文,”鋁、銅合金真空硬銲之研究”,國立中興大學材料工程學系所,碩士論文。(2010)
33. 廖盛如,”6061鋁合金真空硬銲接合面之機械性能與氣密性”,國立中興大學機械工程學系所,碩士論文。(2009)
34. X. Yue, P. He, J. C. Feng, J. H. Zhang and F. Q. Zhu, “Microstructure and Interfacial Reactions of Vacuum Brazing Titanium Alloy to Stainless Steel Using an Ag-Cu-Ti Filler Metal,” Materials Characterization, Vol. 59, Issue 12, pp. 1721-1727. (2008)
35. W. C. Jiang, J. M. Gong and S. T. Tu, “A New Cooling Method for Vacuum Brazing of a Stainless Steel Plate–Fin Structure,” Materials and Design, Vol. 31, Issue 1, pp. 648-653. (2010)
36. S. H. Wang, H. P. Zhou and Y. P. Kang, “The Influence of Rare Earth Elements on Microstructures and Properties of 6061 Aluminium Alloy Vacuum-Brazed Joints,” Journal of Alloys and Compounds, Vol. 352, Issues 1-2, pp. 79-83. (2003)
37. N. N. Chen, Y. Feng, J. Chen, B. Li, F. Y. Chen and J. S. Zhao, “Vacuum Brazing Processes of Aluminum Foam,” Rare Metal Materials and Engineering, Vol. 42, Issue 6, pp.1118-1122. (2013)
38. E. B. Ratts, Y. L. Murphey and Y. N. Zhou, “Thermal Modeling of Controlled Atmosphere Brazing Process Using Virtual Reality Technology,” Applied Thermal Engineering, Vol. 20, Issue 17, pp. 1667-1678. (2000)
39. C. Moller and J. Grann, “Vacuum Aluminum Brazing-What Matters Most,” In: Proceedings of the 5th International Brazing and Soldering Conference, Las Vegas. (APR, 2012)
40. F. Zhao, Z. S. Chen, F. Gao and Y. Tu, “Effect of Brazing Processing Technique on Microstructure of Aluminum Vacuum Brazing,” Material Science and Technology, Vol. 19, No. Suppl. 1, pp.178-181. (2011)
41. N. Chen, Y. Feng, J. Chen, B. Li and F. Chen, “Properties of Aluminum Foam Joints during Contact Reactive Brazing Processes,” Transactions of the China Welding Institution, Vol. 34, No. 4 pp.77-80. (2013)
42. C. Wesolek, “Determining the Strength of Aluminum Braze Joints,” Welding Journal, Vol. 80, No. 10, pp.42-44. (2001)
43. F. Gao, H. Zhao, D. P. Sekulic, Y. Qian and L. Walker, “Solid State Si Diffusion and Joint Formation Involving Aluminium Brazing Sheet,” Materials Science and Engineering A, Vol. 337, Issues 1-2, pp. 228-235. (2002)
44. M. Kobashi, T. Ninomiya, N. Kanetake and T. Choh, “Effect of Alloying Elements in the Brazing Sheet on the Bonding Strength between Al2O3 and Aluminium,” Scripta Materialia, Vol. 34, Issue 3, pp. 415-420. (1996)
45. P. Liu, Y. J. Li, J. Wang and J. S. Guo, “Vacuum Brazing Technology and Microstructure near the Interface of Al/18-8 Stainless Steel,” Materials Research Bulletin, Vol. 38, Issues 9-10, pp. 1493-1499. (2003)
46. S. S. Wang, M. D. Cheng, L. C. Tsao and T. H. Chuang, “Corrosion Behavior of Al-Si-Cu-(Sn, Zn) Brazing Filler Metals,” Materials Characterization, Vol. 47, Issue 5, pp. 401-409. (2001)
47. Q. Y. Zhang, “Reduction of Metal Ions on Aluminium in Molten Flux during Aluminium Brazing,” China Welding, Vol. 3, Issue 1, pp. 10-14. (1994)
48. E. Macherauch and H. Wohlfahrt, “Residual Stresses in Welded Construction and Their Effects,” In: Proceedings of the Welding Institute, 267-282. (November 1977)
49. L. Tall, “Residual Stress in Welding Plates-A Theoretical Study,” Welding Journal, Vol. 43, pp. 10-23. (1964)
50. G. Glinka, “Effect of Residual Stresses on Fatigue Crack Growth in Steel Weldments under Constant and Variable Amplitude Loads,” Fracture Mechanics, ASTM STP 677, American Society for Testing and Materials, United States of America, pp. 198-214. (1979)
51. K. Masubuchi, “Analysis of welded structures,” Pergamon, Oxford. (1980)
52. R. Jaccard, “Fatigue Crack Propagation in Aluminium,” International Institute of Welding, United States of America, Doc. XIII-1377-90. (1990)
53. S. Kou, “Welding Metallurgy,” John Wiley and Sons, New York. (1987)
54. L. W. Eastwood, “Gases in Non-Ferrous Metal and Alloys,” American Society for Metals, Cleveland, Ohio. (1953)
55. R. F. Ashton, R. P. Wesley and C. R. Dixon, “The Effect of Porosity on 5086-116 Aluminium Alloy Welds,” Welding Journal, Vol. 54, Issue 3, pp. 95-98. (1975)
56. T. Matic and Z. Domazet, “Determination of Structural Stress for Fatigue Analysis of Welded Aluminium Components Subjected to Bending,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, Issue 9, pp. 835-844. (2005)
57. S. J. Maddox, “Review of Fatigue Assessment Procedures for Welded Aluminium Structures,” International Journal of Fatigue, Vol. 25, Issue 12, pp. 1359-1378. (2003)
58. “European Recommendations for Aluminium Alloy Structures, Fatigue Design,” European Convention for Constructional Steelwork, Brussels, Document No. 68. (1992)
59. “Fatigue Assessment of Aluminium Structures,” Det Norske Veritas, Norway, Technical report No. LIB-J-000010. (1995)
60. J. A. M. Pinho-da-Cruz, J. A. M. Ferreira, J. D. M. Costa and L. F. P. Borrego, “Fatigue Analysis of Thin Al-Mg-Si Welded Joints under Constant and Variable Amplitude Block Loadings,” Thin-Walled Structures, Vol. 41, Issue 5, pp. 389-402. (2003)
61. M. Matema, A. Koursaris and A. Paterson, “Fatigue Properties of Fabricated Aluminium I-Beams,” Journal of The South African Institute of Mining and Metallurgy, Vol. 105, Issue 3, pp. 177-181. (2005)
62. M. Kalenda and D. T. Madeleine, “Corrosion Fatigue Behaviour of Aluminium Alloy 6061-T651 Welded Using Fully Automatic Gas Metal Arc Welding and ER5183 Filler Alloy,” International Journal of Fatigue, Vol. 33, Issue 12, pp. 1539-1547. (2011)
63. K. K. Mustafa, K. Erdinc, S. Aydın and B. Ozden, “Experimental Comparison of MIG and Friction Stir Welding Processes for en AW-6061-T6 (Al-Mg1-Si-Cu) Aluminum Alloy,” The Arabian Journal for Science and Engineering, Vol. 35, Issue 1B, pp. 321-330. (2010)
64. J. Y. Li and J. M. Ma, “Effect of Welding Processes on Fatigue Properties of 6061-T6 Aluminum Welded Joints,” Journal of Aeronautical Materials, Vol. 24, Issue 3, pp. 52-57. (2004)
65. X. X. Yao, R. Sandström and T. Stenqvist, “Strain-Controlled Fatigue of a Braze Clad Al-Mn-Mg Alloy at Room Temperature and at 75 and 180°C,” Materials Science and Engineering A, Vol. 267, Issue 1, pp. 1-6. (1999)
66. X. G. Yang, C. L. Dong, D. Q. Shi and L. Zhang, “Experimental Investigation on Both Low Cycle Fatigue and Fracture Behavior of DZ125 Base Metal and the Brazed Joint at Elevated Temperature,” Materials Science and Engineering A, Vol. 528, Issues 22-23, pp. 7005-7011. (2011)
67. 李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司。(2008)
68. “Standard Practice for Microetching Metals and Alloys,” ASTM-E407, American Society for Testing and Materials, United States of America. (2012)
69. “Method of Vickers Hardness Test,” CNS 2115 Z8004, Chinese National Standards, Taiwan. (1983)
70. “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM-E8, American Society for Testing and Materials, United States of America. (2012)
71. “Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM-E466, American Society for Testing and Materials, United States of America. (2012)
72. D. V. Nelson and H. O. Fuchs, “Predictions of Cumulative Fatigue Damage Using Condensed Load Histories,” in Fatigue under Complex Loading: Analyses and Experiments, Vol. AE-6, R. M. Wetzel, ed., The Society of Automotive Engineers, Warrendale, pp. 163-187. (1977)
73. J. A. Bannantine, J. J. Comer and J. L. Hardrock, “Fundamentals of Metal Fatigue Analysis,” Prentice Hall, New Jersey. (1990)
74. 黃嘉彥,“工程結構之疲勞與破壞”,徐氏基金會。(1998)
75. “Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01, Metals-Mechanical Testing; Elevated and Low-Temperature Tests,” American Society for Testing and Materials, United States of America. (1986)
76. 陳裕城,“機械零組件之加速耐久分析”,國立中央大學機械工程研究所,碩士論文。(1998)
77. “Specification for Filler Metals for Brazing and Braze Welding,” AWS A5.8/5.8M, American Welding Society, United States of America. (2004)
78. G. T. Yahr, “Fatigue Design Curves for 6061-T6 Aluminum,” Journal of Pressure Vessel Technology, Vol. 119, Issue 2, pp. 211-215. (1997) |