參考文獻 |
[1] T. Quemerais, D. Gloria, D. Golanski, and S. Bouvot, “High-Q MOS Varactors for Millimeter-Wave Applications in CMOS 28-nm FDSOI” IEEE Electron Device Letters, vol. 36, no. 2, pp. 87-89, Feb. 2015.
[2] S. Elabd, S. Balasubramanian, Q. Wu, T. Quach, A. Mattamana, and W. Khalil, “Analytical and Experimental Study of Wide Tuning Range mm-Wave CMOS LC-VCOs” IEEE Trans. Circuits Syst. Regul. Pap., vol. 61, no. 5, pp. 1343-1354, May 2014.
[3] Y. W. Chen, T. N. Luo, H. Cruz, and Y. J. E. Chen, “A W-band harmonically enhanced CMOS divide-by-3 frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 4, pp. 257–259, Apr. 2014.
[4] W. Dangwei, W. Lihua, and L. Fangyao, “Steady-state Tracking Error Analysis of GPS Receiver Frequency Locked Loop” in 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP) Beijing, pp. 114-118, 2013.
[5] W. Khalil, S. Shashidharan, T. Copani, S. Chakraborty, S. Kiaei, and B. Bakkaloglu, “A 700-μA 405-MHz all-digital fractional-N frequencylocked loop for ISM band applications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1319–1326, May 2011.
[6] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278–280, Apr. 2008.
[7] A. Visweswaran, R. B. Staszewski, and J. R. Long, “A low phase noise oscillator principled on transformer-coupled hard limiting,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 300–311, Feb. 2014.
[8] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107–1118, May 2005.
[9] K.-K. Huang, and D. D. Wentzloff, “A 60 GHz Antenna-Referenced Frequency-Locked Loop in 0.13 μm CMOS for Wireless Sensor Networks” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2956–2965, Dec. 2011.
[10] H. Matsumoto, and K. Watanabe, “Switched-capacitor frequency-tovoltage and voltage-to-frequency converters based on charge-balancing principle,” in Proc. Int. Symp. Circuits Syst., Jun. 1988, vol. 3, pp. 2221–2224.
[11] C. E. Lin, and A. S. Hou, “Design of frequency-to-voltage converter using successive-approximation technique,” in Proc. Instrum. Meas. Technol. Conf., 2003, vol. 2, pp. 1438–1443.
[12] H. T. Bui et al., “Design of a high-speed differential frequency-tovoltage converter and its application in a 5 GHz frequency locked loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 4, pp. 766–774, Apr. 2008.
[13] A. Djemouai, M. Sawan, and M. Slamani, "New 200 MHz frequency-locked loop based on new frequency-to-voltage converters approach," in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 2, Orlando, USA, May 1999, pp. 89-92.
[14] D. Borio, L. Camoriano, L. Lo Presti, M. Fantino, "DTFT-Based Frequency Lock Loop for GNSS Applications," IEEE Transaction on Aerospace and Electronic Systems, vol 44, No 2, April 2008.
[15] 高曜煌,射頻鎖相迴路IC設計,第二章,滄海書局,民國 94 年。
[16] 劉深淵、楊清淵,鎖相迴路,第一章、第二章,滄海書局,民國 100 年。
[17] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[18] Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77GHz FMCW radar system in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 216-217.
[19] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
[20] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1606-1617, Jul. 2011.
[21] R. Appleby, and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” IEEE Proc., vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[22] P. Chen, P. Peng, C. Kao, Y. Chen, and J. Lee, “A 94GHz 3D Image Radar Engine with 4TX/4RX Beamforming Scan Technique in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 146-147.
[23] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75–78.
[24] A. Pottbacker, U. Langmann, and H.-U. Schreiber, “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1747–1751, Dec. 1992.
[25] Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol.55, no.1, pp.44-51, Jan. 2007.
[26] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[27] Y.-H. Peng, and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 256-258, Apr. 2007.
[28] H. Zhuo, Y. Li, W. Rhee, and Z. Wang, “A 1.5GHz All-Digital Frequency-Locked Loop with 1-bit ΔΣ Frequency Detection in 0.18μm CMOS,” in Proc. Int. Symp. VLSI DAT, Taiwan, May 2014.
[29] C. F. Liang and K.J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2011., pp. 90-92.
[30] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection-locked oscillator with a highly-digital tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, pp. 1391-1400, May 2009.
[31] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II: Expr. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[32] H.-Y. Chang, Y.-L. Yeh, Y.-C. Liu, M.-H. Li, and K. Chen, “A low jitter low phase noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65 nm CMOS technology,” IEEE Trans. Microwave Theory & Tech., vol. 62, no. 03, pp. 543-555, Mar. 2014.
[33] Y.-L Yeh, C.-H. Lu, M.-H. Li, H.-Y. Chang, and K. Chen, “A 2.2-2.4 GHz Self-aligned Sub-harmonically Injection-locked Phase-locked Loop using 65 nm CMOS Process,” in Proc. Eur. Micro. Integr. Circuits Conf., Oct. 2014, pp. 269-272.
[34] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[35] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “A 40 GHz Power Efficient Static CML Frequency Divider in 0.13-µm CMOS Technology for High Speed MilimeterWave Wireless Systems,” IEEE ICCSC 2008, pp. 812-815.
[36] N. Kocaman, S. Fallahi, M. Kargar, M. Khanpour, A. Nazemi, U. Singh, and A. Momtaz, “An 8.5-11.5-Gbps SONET transceiver with referenceless frequency acquisition,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1875–1884, Aug. 2013.
[37] B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
[38] J. Lee, A. Leven, J.S. Weiner, Y. Baeyens, Y. Yang, W.-J. Sung, J. Frackoviak, R.F. Kopf, and Y.-K. Chen, “A 6-b 12-GSamples/s track-and-hold amplifier in InP DHBT technology,” IEEE J. Solid-State Circuits, vol. 38, no. 06, pp. 1533-1539, June 2003.
[39] Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-GSample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in InP DHBT technology,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3181-3187, Dec. 2009.
[40] Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 40 G samples/s InP-DHBT Track-and-Hold Amplifier with high dynamic range and large bandwidth,” in 2012 8th Int. Symp. On Commun. Syst., Networks & Digital Signal Process., July 2012, pp. 1-4.
[41] J. Deza, A. Ouslimani, A. Konczykowska, A. Kasbari, M. Riet, J. Godin, and G. Pailler, “A 50-GHz-small-signal-bandwidth 50 GSa/s Track&Hold amplifier in InP DHBT technology,” in 2012 IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-22.
[42] J. Deza, A. Ouslimani, A. Konczykowska, A. Kasbari, and J. Godin, “A 4 GSa/s, 16-GHz input bandwidth master-slave track-and-hold amplifier in InP DHBT technology,” in 2012 20th Telecommun. Forum, Nov. 2012, pp. 502-505.
[43] J.Deza, A. Ouslimani, A. Konczykowska, A. Kasbari, J. Godin, G. Pailler, “70 GSa/s and 51 GHz bandwidth track-and-hold amplifier in InP DHBT process,” Electronics Lett., vol.49, pp. 388-389, Mar. 2013.
[44] S. Shahramian, A. C. Carusone, and S. P. Voinigescu, “Design methodology for a 40-GSamples/s track and hold amplifier in 0.18-μm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 41, pp. 2233-2240, Sept. 2006.
[45] X. Li, W.-M. Kuo, Y. Lu, R. Krithivasan, J.D. Cressler, and A.J. Joseph, “A 5-bit, 18 GS/sec SiGe HBT track-and hold amplifier,” in 2005 IEEE Compound Semiconductor Integr. Circuit Symp., Oct. 2005, pp. 105-108.
[46] X. Li, W.-M. L. Kuo, and J. D. Creeler, “A 40 GS/s SiGe track-and-hold amplifier,” in IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2008, Oct. 2008, pp. 1-4.
[47] S. Shahramian, S. P. Voinigescu, and A. C. Carusone, “A 35-GS/s, 4-bit flash ADC with active data and clock distribution trees,” IEEE J. Solid-State Circuits, vol. 44, pp. 1709-1720, June 2009.
[48] M. Buck, M. Grözing, M. Berroth, M. Epp, and S. Chartier, “A 6 GHz input bandwidth 2 Vpp-diff input range 6.4 GS/s track-and-hold circuit in 0.25 μm BiCMOS,” in 2013 IEEE RFIC Symp. Dig., June 2013, pp. 159-162.
[49] H. Orser, and A. Gopinath, “A 20 GS/s 1.2 V 0.13μm CMOS switched cascode track-and-hold amplifier,” IEEE Trans. Circuits Syst. II, Ex Briefs, vol 57, pp. 512-516, July 2010.
[50] H.-L. Chen, S.-C. Cheng, B.-W. Chen, “A 5-GS/s 46-dBc SFDR track and hold amplifier,” in 2012 Int. Symp. on Intelligent Signal Processing and Communications Systems (ISPACS), 4-7 Nov. 2012, pp. 636-639.
[51] G. Tretter, D. Fritsche, C. Carta, F. Ellinger, “10-GS/s track and hold circuit in 28 nm CMOS,” in 2013 Int. Semiconductor Conf. Dresden-Grenoble (ISCDG), Sept. 2013, pp. 1-3.
[52] J. Proesel, G. Keskin, J.-O. Plouchart, L. Pileggi, "An 8-bit 1.5GS/s flash ADC using post-manufacturing statistical selection," 2010 IEEE Custom Integrated Circuits Conf., Sept. 2010, pp. 1-4.
[53] Y.-C. Liu, H.-Y. Chang, and K. Chen, “A 12 GB/s 3-GHz input bandwidth track-and-hold amplifier in 65 nm CMOS with 48-dB spur-free dynamic range,” in 2014 IEEE MTT-S Int. Microw. Symp. Dig., Florida, USA, Jun. 2014.
[54] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh, and Y.-C. Wang, “Design and analysis of a DC–43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 443-455, Feb. 2011.
[55] H.-Y. Chang, C.-H. Lin, Y.-C. Liu, Y.-L. Yeh, K. Chen, and S.-H. Wu, “65 nm CMOS dual-gate device for Ka-band broadband low noise amplifier and high-accuracy quadrature voltage controlled oscillator,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 06, pp. 2402-2413, Jun. 2013.
|