博碩士論文 101522058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.143.5.161
姓名 施冠安(Guan-an Shih)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 公司治理指標在財務危機預測: 以台灣上市上櫃公司為例
(Corporate government indicators apply in financial distressed problem: taking Taiwan-listed company for example)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 融合生成對抗網路及領域知識的分層式影像擴增
★ 針織布異常偵測方法研究★ 基於工廠生產資料的異常機器維修預測
★ 萃取駕駛人在不同環境之駕駛行為方法★ 基於刮痕瑕疵資料擴增的分割拼接影像生成
★ 應用卷積神經網路於航攝影像做基於坵塊的水稻判釋之研究★ 採迴歸樹進行規則探勘以有效同時降低多種紡織瑕疵
★ 應用增量式學習於多種農作物判釋之研究★ 應用自動化測試於異質環境機器學習管道之 MLOps 系統
★ 農業影像二元分類:坵塊分離的檢測★ 應用遷移學習於胚布瑕疵檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 財務危機預測問題長久以來都是一個重要且常被廣泛討論的主題,吸引了世界各地的投資者和研究學者的關注。以往大部分的學者單純使用財務比率來進行財務危機預測,而近年來開始有學者建議使用公司治理指標可以改善財務危機預測的準確率。
本研究對公司治理指標並與相關文獻比較,發現相關文獻所使用的特徵並不全面,因此我們想知道如果將所有公司治理指標的分類都考慮進來的話,對於財務危機預測是否有所幫助?
最後我們發現在台灣資料集下將所有的公司治理指標都考慮進來確實可以提升財務危機預測的準確率。其中solvency、profitability以及board structure都是重要的分類,因此如果要考慮加入公司治理指標這一類的特徵也需要將這幾類特徵都放到實驗裡面,這樣公司治理特徵才會有幫助。
摘要(英) Financial distress problem (FDP) has been important and widely studied topic. Financial distress prediction is receiving increasing attention of stakeholders and researchers in the worldwide. In the past, most researcher use financial ratios for FDP, recently some researchers proposed that corporate governance indicators may improve the accuracy of FDP.
Our research uses corporate government indicators and compares with related works. We find that these related works just use part of corporate government indicators. Thus when we use all the corporate government indicators in our research it′s still helpful for FDP?
Finally, we find that when we consider all the corporate government indicators will improve the accuracy of FDP in Taiwan dataset. Solvency, profitability, and board structure are important categories, so if we want to consider that using corporate governance indicator to improve the FDP, must use these categories and corporate governance indicators will be helpful.
關鍵字(中) ★ 特徵挑選方法
★ 分類器
★ 財務危機預測
★ 公司治理指標
關鍵字(英) ★ feature selection
★ classifier
★ financial distressed prediction
★ corporate governance indicators
論文目次 中文摘要 i
Abstract iii
表目錄 ix
一、緒論 1
1.1. 研究背景 1
1.2. 研究動機 3
1.3. 研究目的 6
1.4. 論文架構 6
二、文獻探討 7
2.1. CGIs相關研究文獻探討 7
2.2. 分類器介紹 9
2.2.1. 支持向量機 9
2.2.2. 最近鄰居分類 13
2.2.3. 分類回歸樹 14
2.2.4. 類神經網路 14
2.2.5. 單純貝式分類器 16
2.3. 特徵挑選方法 17
2.3.1. Genetic Algorithm (GA) 19
2.3.2. Recursive feature elimination (RFE) 22
2.3.3. Stepwise Discriminant Analysis (SDA) 22
2.3.4. Stepwise Logistic Regression (SLR) 23
2.3.5. t-Test 23
三、實驗設計 25
3.1. 資料來源 25
3.2. 資料前置處理方式 26
3.3. Misclassification cost和cost ratios 26
3.4. 實驗參數 28
3.5. 研究假說 31
3.6. 實驗架構 32
3.5.1. Filter approach實驗設計 33
3.5.2. Wrapper approach實驗設計 34
四、實驗流程與結果分析-1 36
4.1. 針對FRs、CGIs進行討論 36
4.2. 實驗流程 36
4.3. 實驗結果與分析 37
五、實驗流程與結果分析-2 39
5.1. 實驗流程 39
5.2. 實驗結果與結果分析 40
5.2.1. 完整資料集 40
5.2.2. Solvency 42
5.2.3. Profitability 45
5.2.4. Turnover ratios 47
5.2.5. 其他的FRs資料集 49
5.2.6. Board 51
5.2.7. Ownership 53
5.2.8. 其他的CGIs資料集 55
5.2.9. 針對完整資料集進一步討論 57
六、結論與未來展望 60
6.1. 結論 60
6.2. 未來展望 62
參考文獻 63
附錄一 67
附錄二 73
附錄三-其他FRs分類結果呈現 79
Cash flow 79
Growth 81
Others 83
附錄四-其他CGIs分類結果呈現 85
Key person retained 85
Others 87
參考文獻 [1] P. J. Fitzpartrick, "A comparison of ratios of successful industrial enterprises with those of failed companies," Journal of Accounting Research, pp. 598-605, 1932.
[2] W. H. Beaver, "Financial ratios as predictors of failure," Journal of accounting research, pp. 71-111, 1966.
[3] E. I. Altman, "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy," The journal of finance, vol. 23, pp. 589-609, 1968.
[4] J. A. Ohlson, "Financial ratios and the probabilistic prediction of bankruptcy," Journal of accounting research, vol. 18, pp. 109-131, 1980.
[5] L.-H. Chen and H.-D. Hsiao, "Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study," Expert Systems with Applications, vol. 35, pp. 1145-1155, 2008.
[6] Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang, "Predicting corporate financial distress based on integration of support vector machine and logistic regression," Expert Systems with Applications, vol. 33, pp. 434-440, 2007.
[7] K.-S. Shin, T. S. Lee, and H.-j. Kim, "An application of support vector machines in bankruptcy prediction model," Expert Systems with Applications, vol. 28, pp. 127-135, 2005.
[8] C.-H. Wu, G.-H. Tzeng, Y.-J. Goo, and W.-C. Fang, "A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy," Expert systems with applications, vol. 32, pp. 397-408, 2007.
[9] D. West, "Neural network credit scoring models," Computers & Operations Research, vol. 27, pp. 1131-1152, 2000.
[10] L. Sun and P. P. Shenoy, "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, vol. 180, pp. 738-753, 2007.
[11] H. Li, J. Sun, and J. Wu, "Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods," Expert Systems with Applications, vol. 37, pp. 5895-5904, 2010.
[12] K. Y. Tam and M. Y. Kiang, "Managerial applications of neural networks: the case of bank failure predictions," Management science, vol. 38, pp. 926-947, 1992.
[13] E. N. Ozkan-Gunay and M. Ozkan, "Prediction of bank failures in emerging financial markets: an ANN approach," Journal of Risk Finance, The, vol. 8, pp. 465-480, 2007.
[14] F. Lin, D. Liang, and W.-S. Chu, "The Role of Non-financial Features Related to Corporate Governance in Business Crisis Prediction," Journal of Marine Science and Technology, vol. 18, pp. 504-513, 2010.
[15] T. S. Lee and Y. H. Yeh, "Corporate governance and financial distress: evidence from Taiwan," Corporate Governance: An International Review, vol. 12, pp. 378-388, 2004.
[16] J.-L. Wu, "Do Corporate Governance Factors Matter for Financial Distress Prediction of Firms? Evidence from Tiawan," University of Nottingham, 2007.
[17] MBA智庫百科. Available: http://wiki.mbalib.com/wiki/MBA
[18] J. Collier and R. Esteban, "Governance in the participative organisation: freedom, creativity and ethics," Journal of Business Ethics, vol. 21, pp. 173-188, 1999.
[19] Y.-H. Yeh and T. Woidtke, "Commitment or entrenchment?: Controlling shareholders and board composition," Journal of Banking & Finance, vol. 29, pp. 1857-1885, 2005.
[20] Q. Liang, P. Xu, and P. Jiraporn, "Board characteristics and Chinese bank performance," Journal of Banking & Finance, vol. 37, pp. 2953-2968, 2013.
[21] H. Berkman, R. A. Cole, and L. J. Fu, "Expropriation through loan guarantees to related parties: Evidence from China," Journal of Banking & Finance, vol. 33, pp. 141-156, 2009.
[22] Y.-L. Cheung, C.-W. Chung, W. Tan, and W. Wang, "Connected board of directors: A blessing or a curse?," Journal of Banking & Finance, vol. 37, pp. 3227-3242, 2013.
[23] M. Jian and T. J. Wong, "Propping through related party transactions," Review of Accounting Studies, vol. 15, pp. 70-105, 2010.
[24] R. La Porta, F. Lopez‐de‐Silanes, and A. Shleifer, "Corporate ownership around the world," The journal of finance, vol. 54, pp. 471-517, 1999.
[25] S. Claessens, S. Djankov, and L. C. Xu, "Corporate performance in the East Asian financial crisis," The World Bank Research Observer, vol. 15, pp. 23-46, 2000.
[26] S. Albring, D. Robinson, and M. Robinson, "Audit committee financial expertise, corporate governance, and the voluntary switch from auditor-provided to non-auditor-provided tax services," Advances in Accounting, 2013.
[27] L. Dan, "Does auditor tenure affect accounting conservatism? Further evidence," Journal of Accounting and Public Policy, vol. 29, pp. 226-241, 2010.
[28] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, "Particle swarm optimization for parameter determination and feature selection of support vector machines," Expert Systems with Applications, vol. 35, pp. 1817-1824, 2008.
[29] C.-F. Tsai, "Feature selection in bankruptcy prediction," Knowledge-Based Systems, vol. 22, pp. 120-127, 2009.
[30] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, and S. Y. Philip, "Top 10 algorithms in data mining," Knowledge and Information Systems, vol. 14, pp. 1-37, 2008.
[31] W.-Y. Lin, Y.-H. Hu, and C.-F. Tsai, "Machine learning in financial crisis prediction: a survey," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 42, pp. 421-436, 2012.
[32] F. Lin, D. Liang, and E. Chen, "Financial ratio selection for business crisis prediction," Expert Systems with Applications, vol. 38, pp. 15094-15102, 2011.
[33] L. B. J. F. R. Olshen and C. J. Stone, "Classification and regression trees," Wadsworth International Group, 1984.
[34] C.-F. Tsai and M.-L. Chen, "Credit rating by hybrid machine learning techniques," Applied Soft Computing, vol. 10, pp. 374-380, 2010.
[35] H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," Knowledge and Data Engineering, IEEE Transactions on, vol. 17, pp. 491-502, 2005.
[36] G. R. Iversen and H. Norpoth, Analysis of variance: Sage, 1987.
[37] E. S. Pearson, W. S. Gosset, R. L. Plackett, and G. A. Barnard, Student: a statistical biography of William Sealy Gosset: Oxford University Press, USA, 1990.
[38] W. R. Klecka, Discriminant analysis: Sage, 1980.
[39] D. Wooff, "Logistic Regression: a Self‐learning Text," Journal of the Royal Statistical Society: Series A (Statistics in Society), vol. 167, pp. 192-194, 2004.
[40] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial intelligence, vol. 97, pp. 273-324, 1997.
[41] A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artificial intelligence, vol. 97, pp. 245-271, 1997.
[42] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," The Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
[43] J. Kittler, "Feature set search algorithms," Pattern recognition and signal processing, pp. 41-60, 1978.
[44] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press, 1975.
[45] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine learning, vol. 46, pp. 389-422, 2002.
[46] S. Balcaen and H. Ooghe, "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, vol. 38, pp. 63-93, 2006.
[47] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey," Computer, vol. 27, pp. 17-26, 1994.
[48] R. A. Fisher, "The use of multiple measurements in taxonomic problems," Annals of eugenics, vol. 7, pp. 179-188, 1936.
[49] J. Neter, W. Wasserman, and M. H. Kutner, Applied linear statistical models vol. 4: Irwin Chicago, 1996.
[50] R. A. Fisher and F. Yates, "Statistical tables for biological, agricultural and medical research," Statistical tables for biological, agricultural and medical research., 1949.
[51] L. Breiman, "Bagging predictors," Machine learning, vol. 24, pp. 123-140, 1996.
[52] J. Efrim Boritz and D. B. Kennedy, "Effectiveness of neural network types for prediction of business failure," Expert Systems with Applications, vol. 9, pp. 503-512, 1995.
[53] G. H. John and P. Langley, "Estimating continuous distributions in Bayesian classifiers," in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, 1995, pp. 338-345.
[54] P.-W. Huang and C.-L. Liu, "Using genetic algorithms for feature selection in predicting financial distresses with support vector machines," in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2006, pp. 4892-4897.
[55] N. Chen, A. S. Vieira, J. Duarte, B. Ribeiro, and J. C. Neves, "Cost-sensitive learning vector quantization for financial distress prediction," in Progress in Artificial Intelligence, ed: Springer, 2009, pp. 374-385.
[56] P. L. Brockett, L. L. Golden, J. Jang, and C. Yang, "A comparison of neural network, statistical methods, and variable choice for life insurers′ financial distress prediction," Journal of Risk and Insurance, vol. 73, pp. 397-419, 2006.
[57] O. S. Persons, "Using financial statement data to identify factors associated with fraudulent financial reporting," Journal of Applied Business Research (JABR), vol. 11, pp. 38-46, 2011.
[58] M.-J. Kim and D.-K. Kang, "Ensemble with neural networks for bankruptcy prediction," Expert Systems with Applications, vol. 37, pp. 3373-3379, 2010.
指導教授 梁德容(deron liang) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明