博碩士論文 101583003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.145.59.244
姓名 古瓊昇(Chiung-Shen Ku)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 極化合成孔徑雷達成像模擬:全波方法
(Polarimetric Synthetic Aperture Radar Imaging Simulation: A Full-wave Approach)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究透過全波方法中的矩量法針對合成孔徑雷達回波訊號進行模擬,並透過改進後的成像算法進行聚焦處理。所得的聚焦圖像相 較於傳統方法不同之處在於可完整描述觀察目標物的散射電磁特性、 評估多徑效應、驗證系統性能以及研究極化信息等優點。利用麥克斯 韋方程和邊界條件,所推導出的波動方程式,可用於描述金屬和介電 質物體的電磁行為。透過三角形面所定義的基礎函數及測試函數,可 將其用於將積分方程離散為矩陣方程。對於矩量法矩陣方程求解,採 用雙共軛梯度法並結合預條件加速基函數 MLFMA 迭代方式求解。在計 算出等效電流密度之後,散射場可以在天線照射區域內進行積分。通 過在不同位置所得的散射場進行合成孔徑過程,可以生成回波數據。 同時,可以通過改變發射和接收天線的極化來獲取全極化的回波數據。 然後通過改進後的 Omega-K 算法對全極化的原始數據進行濾波處理 可獲得全極化合成孔徑聚焦圖像。
本方法成功地演示了在不同材料的散射特性、多物體之間的相互 作用、單站和雙站系統的仿真結果比較以及在不同帶寬下的影響討論。 利用不同的介電常數材料,如聚四氟乙烯、陶瓷和砷化鎵,在聚焦圖 像中可表現出不同的散射特性。通過改變兩個目標之間的間距,呈現 出不同程度的相互作用。並且探討了在不同帶寬下散射特性和對於成
像特性的影響。在幾種情況下,討論了單站和雙站之間的散射行為。 通過所提出的方法中發射和接收天線的極化變化,可以生成全極化 SAR 圖像。這些數據可用於極化分解方法比較和誤差分析。
為了驗證所提方法的有效性和性能,在無回波室內進行了一組測 量。透過個人計算機對於雷達收發系統和運動控制器進行同步以獲取 回波數據和位置向量。將前述資料透過成像算法,可以獲得最終的聚 焦圖像。結果顯示所提出的方法與實驗結果十分吻合,成功地證明了 所提方法的可靠性。
透過數值電磁學分析方法中矩量法具有高理論精度的特點,本方 法更完整的描述電磁波與目標物的散射訊息,並成功連結了基於電磁 理論的回波訊號及成像算法的完整過程。此方法可用於未來新型合成 孔徑雷達系統設計、不同觀測目標物散射分析討論。
摘要(英) In this dissertation, based on electromagnetics theory, a complete link between the echo signal of synthetic aperture radar (SAR) and imaging processing is established. Inspired by the method of moment (MoM), which has high theoretical accuracy in computational electromagnetic analysis methods, a SAR raw data simulator based on the MoM is different from the conventional point-target model, which is simply a pure mathematical model. Using Maxwell’s equations and boundary conditions, the electromagnetic wave integral equations are derived to formulate electromagnetic characteristics involving the interaction between metallic and dielectric objects. The simultaneous discretization of the integral equations and surfaces using a set of basis and testing functions defined with triangles leads to dense matrix equations. To accelerate the calculation of large dense matrix equations, they are solved iteratively via the multilevel fast multipole algorithm (MLFMA). After computing the equivalent current density, the scattering field can be integrated over the antenna-illuminated area. By utilizing the synthetic aperture process within different positions, echo data can be generated. In addition, fully polarized echo data can be acquired by changing the polarization of the transmitting and receiving antennas. The fully polarized focus SAR image can be obtained by the refined Omega-K algorithm. The results can be utilized to discuss the scattering mechanism, evaluate the effects of multipath, validate the system performance, and investigate the polarization information.
The proposed method successfully demonstrates comparisons of the simulation results for different materials, interactions between objects, and between monostatic and bistatic systems, and the results at different bandwidths. Different dielectric constant materials, such as Teflon, ceramics glaze (CG) and gallium arsenide (GaAs) are utilized to present the abilities of different scattering characteristics in the focus images. By varying the spacing between two targets, the different degrees of interaction are presented. The effects of scattering characteristics and imaging properties under different bandwidths are investigated. The scattering behaviors between monostatic and bistatic systems are discussed in several cases. Through polarization changes in transmission and receiving antennas with the proposed method, fully polarimetric SAR images can be generated. These data can be used for a comparison with the polarization decomposition method and for error analysis. To validate the effectiveness and performance of the proposed method, a set of measurements was obtained in an anechoic chamber. A network analyzer and a motion controller synchronized by a personal computer were utilized to acquire the echo data and the position vector simultaneously. Then, applying the imaging algorithm to the raw data, the final focus images were obtained. The results from the full-wave method compare well with the experimental results, which successfully demonstrates the reliability of the proposed method.
In conclusion, the simulation of SAR imags based on the MoM and the refined Omega-K algorithm offers more complete recovery of scattering information. The proposed method is useful in designing future novel SAR systems and the analysis of the electromagnetic characteristics of different observation targets.
關鍵字(中) ★ 合成孔徑雷達
★ 矩量法
★ 成像模擬
關鍵字(英) ★ SAR
★ MoM
★ Imaging Simulation
論文目次 TABLE OF CONTENTS
中文摘要 .................................................................................................................................. v
Abstract ...................................................................................................................... vii
LIST OF FIGURES.................................................................................................... xi
LIST OF TABLES.................................................................................................... xiv
Chapter 1 Introduction ............................................................................................... 1
1.1 Basic Review of Radar .................................................................................................. 1
1.2 Review of Synthetic Aperture Radar ........................................................................... 3
1.3 Problem Statement and Objectives.............................................................................. 5
1.4 Organization of the Dissertation .................................................................................. 8
Chapter 2 SAR Scattering and Imaging.................................................................... 9
2.1 Theoretical Description of Electromagnetic Waves ................................................... 9
2.2 Radar Scattering by the Method of Moment ............................................................ 16
2.3 Scattering Field to Echo Signal .................................................................................. 21
2.4 Imaging Focusing by the Refined Omega-K Imaging Algorithm ........................... 23
2.5 A Flowchart of the Proposed Method ........................................................................ 26
Chapter 3 SAR Imaging Simulations ...................................................................... 27
3.1 Physical Properties of A Target.................................................................................. 28
3.2 Effects of Multiple Scattering ..................................................................................... 36
3.3 Effects of System Bandwidth ...................................................................................... 41
3.4 Bistatic and Monostatic Configurations .................................................................... 59
3.5 Polarization Signatures ............................................................................................... 65
Chapter 4 Results and Discussions .......................................................................... 76
4.1 Comparison of Numerical Simulation and Experimental Data .............................. 76

Chapter 5 Conclusions and Outlooks ...................................................................... 80
5.1 Conclusions................................................................................................................... 80
5.2 Outlooks........................................................................................................................ 82
Bibliographies ............................................................................................................ 83
參考文獻 [1] D. K. Barton, Modern Radar System Analysis. Norwood, MA: Artech House, 1988.
[2] M. I. Skolnik, Introduction to Radar Systems, 3rd ed. McGraw-Hill, New York, 2001.
[3] M. I. Skolnik, Radar Handbook, 3rd ed. McGraw-Hill, New York, 2008.
[4] K. Tomiyasu, “Tutorial Review of Synthetic-Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface,” IEEE Proc., Vol. 66, No. 5, May 1978.
[5] F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote Sensing: Active and Passive, Volume II, Radar Remote Sensing and Surface Scattering and Emission
Theory. Norwood, MA, USA: Artech House, Inc., 1982.
[6] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing. New York, USA: Wiley-Interscience, 1991.
[7] F. M. Henderson and A. J. Lewis, Principles and applications of imaging radar.
Manual of remote sensing: Third edition, Volume 2. New York, USA: Wiley, 1998.
[8] C. Elachi and J. van Zyl, Introduction to the Physics and Techniques of Remote Sensing. New York, Chichester: John Wiley & Sons Ltd, 2006
[9] J.S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications. Boca Raton, FL, USA: CRC Press, 2009.
[10] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek and K. P.
Papathanassiou, ”A tutorial on synthetic aperture radar,” in IEEE Geoscience and
Remote Sensing Magazine, vol. 1, no. 1, pp. 6-43, March 2013.
[11] W. G. Carrara, R. S. Goodman and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms. Norwood, MA, USA: Artech House, 1995.
[12] G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing. Boca Raton, FL, USA: CRC Press, 1999
[13] I. G. Cumming and F. H. Wong, Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Boston: Artech House, 2005.
[14] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images. Raleigh, NC: SciTech Publ. Inc., 2004
[15] X.L. Qiu, C.B Ding and D.H. Hu, Bistatic sar data processing algorithms. New York: Wiley, 2013.
[16] K. S. Chen, Principles of Synthetic Aperture Radar: A System Simulation Approach. Boca Raton, FL, USA: CRC Press, 2015.
[17] Y. Sheng and D. E. Alsdorf, “Automated georeferencing and orthorectification of amazon basin-wide SAR mosaics using SRTM DEM data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 8, pp. 1929–1940, 2005.
[18] M. Gelautz, H. Frick, J. Raggam, J. Burgstaller, and F. Leberl, “SAR image simulation and analysis of alpine terrain,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 53, no. 1, pp. 17–38, 1998.
[19] C. Camporeale and G. Galati, “Digital computer simulation of synthetic aperture systems and images,” Eur. Trans. Telecommun. Relat. Technol., vol. 2, no. 3, pp. 343– 352, 1991.
[20] G. Franceschetti, M. Migliaccio, D. Riccio and G. Schirinzi, “SARAS: A synthetic aperture radar (SAR) raw signal simulator,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 1, pp. 110–123, Jan. 1992.
[21] C. Gierull and M. Ruppel, “An end-to-end synthetic aperture radar simulator,” in Proc. EUSAR, pp. 569–572. 1996.
[22] A. Meta, P. Hoogeboom, and L. P. Ligthart, “Signal processing for FMCW SAR,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3519–3532, Nov. 2007.
[23] X. Qiu, D. Hu, and L. Zhou, “A bistatic SAR raw data simulator based on inverse ω-k algorithm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 3, pp.1540– 1547, 2009.
[24] E. Thorsos and D. Jackson, ”Studies of Scattering Theory Using Numerical Methods,” Waves Random Media, 1, pp. 165-190, July 1991.
[25] H. Ling, R. Chou, and S. Lee, “Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 2, pp. 194–205, 1989.
[26] S. Auer, S. Hinz, R. Bamler, “Ray-tracing Simulation Techniques for Understanding High-resolution SAR Images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1445-1456, 2010.
[27] S. K. Jeng, “Near-field scattering by physical theory of diffraction and shooting and bouncing rays,” in IEEE Transactions on Antennas and Propagation, vol. 46, no. 4, pp. 551-558, April 1998.
[28] R. Bhalla and H. Ling, “Three-dimensional scattering center extraction using the shooting and bouncing ray technique,” inIEEE Transactions on Antennas and
Propagation, vol. 44, no. 11, pp. 1445-1453, Nov. 1996.
[29] M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th ed., Cambridge, UK: Cambridge University Press, 1999.
[30] L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Norwood, MA, USA: Artech House, 1985.
[31] M. Gilman and S. Tsynkov, “A mathematical model for SAR imaging beyond the first born approximation,” SIAM J. Imag. Sci. 8(1), 186–225 (2015).
[32] D.H. Liao, T. Dogaru, “Full-Wave Scattering and Imaging Characterization of
Realistic Trees for FOPEN Sensing,” IEEE Geoscience and Remote Sensing Letters,
Volume: 13, Issue: 7 Pages: 957 – 961,2016
[33] D.H. Liao, T. Dogaru and A. Sullivan, “Large-scale, full-wave-based emulation ofstep-frequency forward-looking radar imaging in rough terrain environments,” Sens. Image. Int. J. (Springer), vol. 15, pp. 1–29, Apr. 2014.
[34] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic Scattering by Surfaces of Arbitrary Shape,” IEEE Transactions on Antennas and Propagation, 30:409–418, May 1982.
[35] R.F. Harrington, “The Method of Moments in Electromagnetics,” Journal of
Electromagnetic Waves and Applications, 1:3, 181-200, 1987.
[36] W. C. Gibson, The Method of Moments in Electromagnetics, Second Edition, Boca Raton, FL, USA: CRC Press, 2007
[37] A. Ishmaru, Electromagnetic Wave Propagation, Radiation, and Scattering, New Jersey, USA: Prentice-Hall, 1991.
[38] W. C. Chew, WAVES AND FIELDS IN INHOMOGENEOUS MEDIA, New York:
Wiley-IEEE Press, 1995.
[39] L. Tsang, J. A. Kong, K. H. Ding and C.O. Ao, Scattering of Electromagnetic Waves, vol. 2: Numerical Simulations, New York, USA: Wiley, 2001.
[40] C. S. Ku, K. S. Chen, P. C. Chang, and Y. L. Chang, “Imaging Simulation for
Synthetic Aperture Radar: A Full-Wave Approach,” Remote Sens. 10(9), 1404, 2018.
[41] W-M. Boerner, et al. (Eds.), “Direct and Inverse Methods in Radar Polarimetry, Proceedings of the NATO-ARW,” NATO-ASI Series C: Math & Phys. Sciences, vol. C-350, Parts 1&2, D. Reidel Publ. Co., Kluwer Academic Publ., Dordrecht, the
Netherlands, February 15, 1992.
[42] H. Mott, Antennas for Radar and Communications, A Polarimetric Approach, New York: John Wiley & Sons, 1992.
[43] C. Elachi and J. van Zyl, Introduction to the Physics and Techniques of Remote Sensing, New York: John Wiley & Sons, 2006
[44] S. R. Cloude, Polarisation: Applications in Remote Sensing, Oxford, UK: Oxford University Press, 2009.
[45] J. van Zyl, Synthetic Aperture Radar Polarimetry, New York: Wiley, 2011.
[46] K. S. Chen, and Y. C. Tzeng, “On SAR image processing: From focusing to target recognition,” in Signal and Image Processing for Remote Sensing, ed. Chen C. H., 2nd ed., Boca Raton New York: CRC Press, 2012.
[47] Y. Q. Jin, and F. Xu, Polarimetric Scattering and SAR Information Retrieval, New York: Wiley-IEEE Press, 2013.
[48] G. Moser, J. Zerubia, Mathematical Models for Remote Sensing Image Processing. Switzerland: Springer International Publishing, 2018.
[49] W. M. Boerner and M.B. El-Arini, “Polarization dependence in electromagnetic
inverse problem,” IEEE Transactions on Antennas and Propagation, 29(2), 262–271,
1981.
[50] S. Zhang, M. Xing and K. Zhang, “Characteristics Analysis and Image Processing for Full-Polarization Synthetic Aperture Radar Based on Electromagnetic Scattering From Flat Horizontal Perfect Electric Conducting Reflector,”IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 1, pp. 313-327, Jan. 2018.
[51] K. J. Langenberg, “Principles of microwave imaging and inverse scattering,” EARSel Adv. Remote Sens., vol. 2, no. 1-I, pp. 163–186, Jan. 1993.
[52] K. Sarabandi, “Calibration of a polarimetric synthetic aperture radar using a known distributed target,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 3, pp. 575-582, May 1994.
[53] C. M. H. Unal, R. J. Niemeijer, J. S. van Sinttruyen and L. P. Ligthart, “Calibration of a polarimetric radar using a rotatable dihedral corner reflector,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 4, pp. 837-845, July 1994.
指導教授 張寶基 張陽郎(Pao-Chi Chang Yang-Lang Chang) 審核日期 2020-4-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明