摘要(英) |
An explicit simulation of Typhoon Morakot(2009) was studied. Three groups of numerical experiments were designed by varying microphysics parameterization schemes and vertical resolution, which were i) single-moment(WSM6_31) and double-moment(WDM6_31) schemes, ii) different vertical resolution(WDM6_21, WDM6_31, WDM6_mix45) and iii)different double-moment schemes(WDM6_31, Thompson_31, Morrison_31, Milbrandt and Yau_31). The study focused on the effects on the accumulated precipitation over mountainous areas, which was usually overestimated by model simulation. In addition to the comparison of radar reflectivity, typhoon tracks and intensity, precipitation maximum and patterns, a series of quantitatively statistics scores were evaluated between the observation data and model output.
In experiment i), WDM6_31 revealed a better performance on typhoon intensity and landfall time than WSM6_31. Besides, WDM6_31 also had better TSs and ETSs in 24-hour accumulated precipitation. In experiment ii), varying the vertical resolution had a small effect on typhoon precipitation maximum, intensity and landfall time simulation. No matter for 24-hour or 6-hour accumulated precipitation, WDM6_mix45 had the best performance among three simulations. Because of the finer vertical resolution in mid-to-upper layers, WDM6_mix45 avoided the unreasonable vertical velocity and radar reflectivity in upper layers. At the same time, WDM6_mix45 revealed the break down process of typhoon eye, which reduced typhoon intensity efficiently then lowered the overestimation of precipitation maximum in other simulations.
In experiment iii), Thompson_31, Morrison_31, Milbrandt and Yau_31 runs improved the positive bias for WDM6_31 run on radar reflectivity and precipitation maximum. On August 8th, Milbrandt and Yau_31 run had the smallest BIAS-1 value. While applying the statistics scores, the users should pay attention to the deficiencies of the scores, which could mislead the ability of model’s precipitation predicbility. On the vertical crosssection over terrain, WDM6_31 tended to produce more raindrops, Thompson_31 tended to produce more snows, whereas Milbrandt and Yau_31 tended to produce more ice flakes. It was the difference of original designs for every schemes that made the difference of precipitation simulations.
|
參考文獻 |
參考文獻
周仲島、李清勝、鄭明典、鳳雷、于宜強,2010:「莫拉克颱風綜觀環境與降雨
特徵分析」,莫拉克颱風科學報告。
簡芳菁、蕭育琪、周仲島、林沛練、楊明仁、洪景山、鄧仁星、林慧娟,2003:
「MM5系集降水預報之校驗」,大氣科學,31,77–93。
傅佑瑜,2008:2005年台灣地區季節性降雨之特徵及颱風事件之逕流模擬, 中央大
學水文科學研究所碩士論文。
錢伊筠, 2010: WRF 模式Double-moment 雲微物理參數化法對於SoWMEX
IOP-4 個案降水模擬之敏感度研究,中央大學大氣物理研究所碩士論
文。
周俊宇,2012:西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較,中央大學大氣物理研究所碩士論文。
Brandes, E. A., K. Ikeda, G. Zhang, M. Schonhuber, and R. M.Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634–650.
Chang, S. W. J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea.Rev., 110, 1255–1270.
Chiao, S., Y.-L. Lin, 2003: Numerical Modeling of an Orographically Enhanced Precipitation Event Associated with Tropical Storm Rachel over Taiwan. Wea. Forecasting, 18, 325–344.
Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152–1171.
Huang, H. L., M.-J. Yang, C.-H. Sui, 2014: Water Budget and
Precipitation Efficiency of Typhoon Morakot (2009). J. Atmos. Sci.,71,112–129.
J.R. Picardo and S. Ghosh ,2011 :Removal Mechanisms in a Tropical Boundary Layer: Quantification of Air Pollutant Removal Rates Around a Heavily Afforested Power Plant Air Pollution – New Developments.,ch13,275-303.
Kim, J. H., D. B. Shin, C. Kummerow, 2013: Impacts of A Priori Databases Using Six WRF Microphysics Schemes on Passive Microwave Rainfall Retrievals. J. Atmos. Oceanic Technol., 30, 2367–2381.
Kimball, S. K., and F. C. Dougherty, 2006: The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon.Wea. Rev., 134,1987–2008.
K.-S. S. Lim and S.-Y. Hong 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev.,138, pp. 1587–1612,
Lee, S. S., and L. J. Donner 2011: Effects of Cloud Parameterization on Radiation and Precipitation: A Comparison Between Single-Moment Microphysics and Double-Moment Microphysics . Terr. Atmos. Ocean. Sci.,22-4, 403-420
Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal Resolution.Mon. Wea. Rev., 117, 2575–2583.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051-3064.
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081.
Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63,3137–3159.
Morrison, H., J. A. Curry, V. I. Khvorostyanov, 2005: A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. J. Atmos. Sci., 62, 1665–1677.
Morrison, H., J. A. Curry, M. D. Shupe, P. Zuidema, 2005: A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds. J. Atmos. Sci., 62, 1678–1693.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.
Morrison,H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 1103-1130.
Roy, S. S.; Datta, R. K.; Bhatia R. C. & Sharma A. K. 2005 :Drop Size Distributions of Tropical Rain over South India. Geofizika, Vol. 22, pp. 105-130
Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.
Thompson, G., R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part II: Implementation of a new snow parameterization. Mon.Wea.Rev., 136, 5095–5115.
Um, J. and McFarquhar, G. M.: Single-scattering properties of aggregates of bullet rosettes in cirrus, J. Appl. Meteorol. Clim., 46, 757–775, 2007.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
Yang, M.-J., and Q.-C. Tung (2003), Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes, J. Meteorol. Soc. Jpn., 81, 1163– 1183
Yang, M.-J., and Q.-C. Tung, 2003: Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J. Meteor. Soc. Japan, 81, 1163-1183
Zhang, D.-L., and X. Wang, 2003: Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20, 711-725.
Zhang, D.-L., L. Zhu, X. Zhang, and V. Tallapragada 2014: Sensitivity of Idealized Hurricane Intensity and Structures Under Varying Background Flows and Initial Vortex Intensities to Different Vertical Resolutions in HWRF. Mon. Wea. Rev., submitted. |