參考文獻 |
[1] Kang. Y., and C. Calos Castillo,
A Simple Epidemiological Model for Populations in The Wild with Allee Effects and Disease-Modified Fitness,
{sl Discrete and Continuous Dynamical Systems Series B}, (2014), pp. 89-130.
[2] Ramasubramanian. B.,
Stochastic Differential Equations in Population Dynamics,
pp. 1-19.
[3] Hutson. V.,Sheffield,
A Theorem on Average Liapunov Functions,
{sl Monatsheftefur Mathematik}, 98 (1984), pp. 267-275.
[4] Hsu. S. B.,
Ordinary Differential Equations with Applications,
{sl World Scientific}, pp. 157.
[5] Kuo. H. H.,
Introduction to Stochastic Integration,
{sl Springer}, pp. 102-137.
[6] Shlomo. S.,
Dynamical Systems,
(2011), pp. 204-211.
[7] I. Bendixson.,
Sur les curbes d′e fini´es par des ′e quations diff′e rentielles,
{sl Acta Math}, 24 (1901), pp. 1-88.
[8] H. Dulac.,
Recherche des cycles limites,
{sl C. R. Acad. Sci. Paris}, 204 (1937), pp. 1703-1706.
[9] C. Castillo-Chavez, K. Cooke, W. Huang and S. A. Levin, Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus, Applied Math. Letters, 2 (1989), 327-331.
[10] A. Cintron-Arias, C. Castillo-Chavez, L. M. Bettencourt, A. L. Lloyd and H. T. Banks, Estimation of the effective reproductive number from disease outbreak data, Math. Biosc. $&$ Eng., 6 (2009), 261-282.
[11] H. Hethcote and J. Yorke, Gonorrhea: Transmission Dynamics and Control, Lecture Notes in Biomathematics, 56, Springer-Verlag, Berlin, 1984.
[12] W. F. Fagan, M. A. Lewis, M. G. Neubert and P. Van Den Driessche, Invasion theory and biological control, Ecology Letters, 5 (2002), 148-157.
[13] Z. Feng, C. Castillo-Chavez and A. Capurro, A model for tb with exogenous reinfection, Journal of Theoretical Population Biology, 57 (2000), 235-247.
[14] G. Dwyer, S. A. Levin and L. Buttel, A simulation model of the population dynamics and evolution of myxomatosis, Ecological Monographs, 60 (1990), 423-447.
[15] F. Courchamp,T. Clutton-Brock and B. Grenfell, Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus, Animal Conservation, 3 (2000), 277-285.
[16] F. M. Hilker, M. Langlais and H. Malchow, The Allee Effect and Infectious Diseases: Extinction, Multistability, and the (Dis-)Appearance of Oscillations, The American Naturalist, 173 (2009), 72–88.
[17] H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?, Journal of Biological Dynamics, 3 (2009), 305-323
[18] D. Pauly, V. Christensen, S. Guenette, T. J. Pitcher, U. R. Sumaila, C. J. Walters and D. Zeller, Towards sustainability in world fisheries, Nature, 418 (2002), 689-695.
[19] K. Sherman and A. M. Duda, Large marine ecosystems: An emerging paradigm for fishery sustainability, Fisheries, 24 (1999), 15-26.
[20] F. S. Berezovskaya, B. Song and C. Castillo-Chavez, Role of prey dispersal and refuges on predator-prey dynamics, SIAM J. APPL. MATH., 70 (2010), 1821-1839
[21] C. Castillo-Chavez and A. A. Yakubu, Dispersal,disease and life history evolution, Math. Biosc., 173 (2001), 35-53.
[22] F. Berezovskaya, G. Karev, B. Song and C. Castillo-Chavez, A simple epidemic model with surprising dynamics, Mathematical Biosciences and Engineering, 2 (2005), 133-152.
[23] R. M. Anderson and R. M. May, Regulation and stability of host-parasite population interactions I: Regulatory processes; II: Destabilizing processes, J. Anita. Ecol. 47 (1978), 219-247; 249-267.
[24] P. Daszak, L. Berger, A. A. Cunningham, A. D. Hyatt, D. E. Green and R. Speare, Emerging infectious diseases and amphibian population declines, Emerging Infectious Diseases, 5 (1999), 735-748.
[25] C. D. Harvell, C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld and M. D. Samuel, Climate warming and disease risks for terrestrial and marine biota, Science, 296 (2002), 2158-2162.
[26] K. F. Smith, D. F. Sax and K. D. Lafferty, Evidence for the role of infectious disease in species extinction and endangerment, Conservation Biology, 20 (2006), 1349-1357.
[27] W. C. Allee, The Social Life of Animals, Norton, New York, 1938.
[28] F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, 2008.
[29] Y. Kang and N. Lanchier, Expansion or extinction: deterministic and stochastic two-patch models with Allee effects, Journal of Mathematical Biology, 62 (2011), 925-973.
[30] P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology $&$ Evolution, 14 (1999), 401-405.
[31] P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?, Oikos, 87 (1999), 185-190.
[32] L. Berec, D. S. Boukal and M. Berec, Linking the Allee effect, sexual reproduction, and temperature-dependent sex determination via spatial dynamics, The American Naturalist, 157 (2001), 217-230.
[33] K. R. Hopper and R. T. Roush, Mate finding, dispersal, number released, and the success of biological control introductions, Ecological Entomology, 18 (1993), 321-331.
[34] R. Lande, Anthropogenic, ecological and genetic factors in extinction and conservation, Re- searches on Population Ecology, 40 (1998), 259-269.
[35] J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation, Journal of Applied Ecology, 41 (2004), 801-810.
[36] B. R. Clark and S. H. Faeth, The consequences of larval aggregation in the butterfly Chlosyne lacinia, Ecological Entomology, 22 (1997), 408-415.
[37] R. Burrows, H. Hofer and M. L. East, Population dynamics, intervention and survival in African wild dogs (Lycaon pictus), Proceedings of the Royal Society B: Biological Sciences, 262 (1995), 235-245.
[38] E. Angulo, G. W. Roemer, L. Berec, J. Gascoigne and F. Courchamp, Double Allee effects and extinction in the island fox, Conservation Biology, 21 (2007), 1082-1091.
[39] D. L. Clifford, J. A. K. Mazet, E. J. Dubovi, D. K. Garcelon, T. J. Coonan, P. A. Conrad and L. Munson, Pathogen exposure in endangered island fox (Urocyon littoralis) populations: implications for conservation management, Biological Conservation, 131 (2006), 230-243.
[40] L. J. Rachowicz, J.-M. Hero, R. A. Alford, J. W. Taylor, J. A. T. Morgan, V. T. Vredenburg, J. P. Collins and C. J. Briggs, The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife, Conserv. Biol., 19 (2005), 1441-1448.
[41] L. F. Skerrat, L. Berger, R. Speare, S. Cashins, K. R. McDonald, A. D. Phillott, H. B. Hines and N. Kenyon, Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs, EcoHealth, 4 (2007), 125-134.
[42] A. Deredec and F. Courchamp, Combined impacts of Allee effects and parasitism, OIKOS, 112 (2006), 667-679.
[43] F. M. Hilker, M. A. Lewis, H. Seno, M. Langlais and H. Malchow, Pathogens can slow down or reverse invasion fronts of their hosts, Biol. Invasions, 7 (2005), 817-832.
[44] A-A. Yakubu, Allee effects in a discrete-time SIS epidemic model with infected newborns, Journal of Difference Equations and Applications, 13 (2007), 341-356.
[45] F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, Journal of Biological Dynamics, 4 (2010), 86-101.
[46] A. Friedman and A-A. Yakubu, Fatal disease and demographic Allee effect: Population per- sistence and extinction, Journal of Biological Dynamics, 6 (2012), 495C-508.
[47] J. M. Cushing, Oscillations in age-structured population models with an Allee effect. Oscillations in nonlinear systems: Applications and numerical aspects, J. Comput. Appl. Math., 52 (1994), 71-80.
[48] A. Drew, E. J. Allen and L. J. S. Allen, Analysis of climate and geographic factors affecting the presence of chytridiomycosis in Australia, Dis. Aquat. Org., 68 (2006), 245-250.
[49] K. E. Emmert and L. J. S. Allen, Population persistence and extinction in a discrete-time stage-structured epidemic model, J. Differ. Eqn Appl., 10 (2004), 1177-1199.
[50] S. R.-J. Jang and S. L. Diamond, A host-parasitoid interaction with Allee effects on the host, Comp. Math. Appl., 53 (2007), 89-103.
[51] Y. Kang and D. Armbruster, Dispersal effects on a two-patch discrete model for plant- herbivore interactions, Journal of Theoretical Biology, 268 (2011), 84-97.
[52] O. Diekmann and M. Kretzshmar, Patterns in the effects of infectious diseases on population growth, Journal of Mathematical Biology, 29 (1991), 539-570. |