以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:17 、訪客IP:3.133.137.33
姓名 梁乃懿(Nai-yi Liang) 查詢紙本館藏 畢業系所 化學學系 論文名稱 含咔唑、芴、吡嗪並咔唑及茚並喹喔啉等結構單元之啞鈴型染料分子的合成與其非線性光學性質探討
(Synthesis and Nonlinear Optical Properties of Novel Dumb-Bell Shaped Chromophores based on Carbazole, Fluorene, Pyrazinocarbazole and Indenoquinoxaline Structural Units.)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文成功合成出一系列含有咔唑(carbazole)、芴(fluorene)、吡嗪並咔唑(pyrazinocarbazole)及茚並喹喔啉(indenoquinoxaline)等結構單元之對稱型分子,探討咔唑(carbazole)和芴(fluorene)兩者結構單元不同組合、延伸中心鍵結共軛長度以及外圍葉片共平面與否…等與其雙光子吸收效能之關聯性,由線性光學可測得其吸收光譜以及螢光光譜,並藉由結構的不同探討其紅移或藍移可能發生的原因。不同結構造成的非線性光學也會有所不同,實驗上利用飛秒脈衝式雷射來激發模型分子,測得其螢光以實驗證明為雙光子機制所誘發之螢光。經由螢光比較法,可測得模型分子之雙光子激發截面,比對量測結果與本論文之模型分子結構可歸納出以下結論:
(1) Carbazole結構單元比fluorene較能提升雙光子吸收效能,且將carbazole置於分子中心此現象會更加明顯。
(2) 雙參鍵(diyne)作為中心連結單元並未有效提升雙光子吸收效能。
(3) 將外圍推電子基團共平面化後,可使波長紅移但卻降低雙光子吸收能力。摘要(英) A series of novel symmetrically substituted chromophores containing carbazole, fluorene, pyrazinocarbazole and indenoquinoxaline units have been synthesized and characterized for their linear and nonlinear optical properties. We aim to investigate the influence caused by the arrangement of fluorene/carbazole units and the extension of the conjugation length by introducing diyne as the linkage on the molecular two-photon absorption based on these model compounds. Our initial results reveal the following structure─two-photon property relationship:
(1) Carbazole can be an effective unit for the enhancement of molecular two-photon absorptivity compared to the fluorene especially when this structural unit is incorporated as part of the central core in our model system.
(2) Diyne may not be a good π- linkage for the promotion of molecular two-photon absorption.
(3) Planarization of the peripheral electron-donating units shifts the two-photon absorption band bathochromically with decreased overall two-photon absorption.關鍵字(中) ★ 咔唑
★ 芴
★ 吡嗪並咔唑
★ 茚並喹喔啉
★ 啞鈴型染料分子
★ 啞鈴型染料分子關鍵字(英) 論文目次 目錄
中文摘要 V
Abstract VI
目錄 VII
第一章 序論 1
1-1 雙光子吸收歷史發展 1
1-2 雙光子吸收過程原理 3
1-3 雙光子吸收材料的相關應用 4
1-4 雙光子吸收材料之分子設計概念及文獻回顧 5
第二章 本論文模型分子設計與合成 13
2-1 本論文模型分子之研究動機 13
2-2 本論文模型分子之合成途徑 16
第三章 光學性質探討 31
3-1光學量測簡述 31
3-2 模型分子之光學量測數據 38
3-2-1 第一類型 探討咔唑及芴結構性質 38
3-2-2 第二類型 探討延伸中心共軛長度之影響 47
3-2-3 第三類型 葉片共平面性質探討 56
3-3 模型分子之光學性質結果與討論 63
第四章 實驗部分 66
4-1 分子合成所使用藥品與溶劑 66
4-2 化合物詳細合成步驟 67
4-2-1本論文中間物之詳細合成步驟 67
4-2-2本論文最終產物之詳細合成步驟 105
第五章 附圖 113
表目錄
表3-1 第一類型模型分子之光學數據 43
表3-2 第二類型模型分子之光學數據 52
表3-3 第三類型模型分子之光學數據 60
圖目錄
圖1-1 CaF2:Eu2+受到紅寶石脈衝式雷射激發出螢光 2
圖1-2 CaF2:Eu2+螢光與入射光強關係圖 2
圖1-3 (A)單光子及(B)雙光子吸收並引發螢光發射之示意圖 3
圖1-4 Parsad N. Prasad研究團隊提出分子設計之概念 6
圖1-5 Marder和Perry研究團隊所提出的分子設計概念 7
圖1-6 樹枝狀結構分子設計概念 8
圖1-7 Charles W. Spangler在Opt Lett.發表樹枝狀結構之分子示意圖 9
圖1-8 Paras N. Prasad 在J. Phys. Chem. B中發表結構之分子示意圖 11
圖1-9 Charles W. Spangler在J. Phys. Chem. B發表結構之分子示意圖 12
圖2-1 實驗室發表在Dyes and Pigments模型分子結構及其光學數據a 13
圖2-2 本論文模型分子之分子構型示意圖 15
圖2-3 本論文模型分子結構及其代號 16
圖2-4 推電子性官能基及其衍生物的合成 Scheme 1 17
圖2-5 推電子性官能基及其衍生物的合成 Scheme 2 18
圖2-6 類喹喔啉前驅物Fluorene-2,3-diamine之合成 19
圖2-7類喹喔啉前驅物Carbazole-2,3-diamine之合成 20
圖2-8 類喹喔啉相關衍生物之合成 Scheme 1 22
圖2-9 對稱型啞鈴型分子之合成 Scheme 1 23
圖2-10對稱型啞鈴型分子之合成 Scheme 2(傳統法) 24
圖2-11對稱型啞鈴型分子之合成 Scheme 3 25
圖2-12 第三類型模型分子合成途徑 Scheme 1 26
圖2-13 第三類型模型分子合成途徑Scheme 2 27
圖2-14 第三類型模型分子合成途徑Scheme 3 28
圖3-1 分子螢光光譜之能階示意圖 33
圖3-2 飛秒雷射量測雙光子螢光光譜之實驗裝置圖 35
圖3-3 第一類型模型分子結構示意圖 38
圖3-4 第一類型模型分子之線性吸收光譜圖 40
圖3-5 第一類型模型分子之線性螢光光譜圖 42
圖3-6 第一類型模型分子於飛秒時域之雙光子截面光譜圖 44
圖3-7 第一類型模型分子雙光子激發螢光強度與激發光源強度關係圖 46
圖3-8 第二類型模型分子結構示意圖 47
圖3-9 第二類型模型分子之線性吸收光譜圖 49
圖3-10 第二類型模型分子之線性螢光光譜圖 51
圖3-11 第二類型模型分子於飛秒時域之雙光子截面光譜圖 53
圖3-12第二類型模型分子雙光子激發螢光強度與激發光源強度關係圖 55
圖3-13 第三類型模型分子結構示意圖 56
圖3-14 第三類型模型分子之線性吸收光譜圖 57
圖3-15 第三類型模型分子之線性螢光光譜圖 59
圖3-16 第三類型模型分子於飛秒時域之雙光子截面光譜圖 61
圖3-17 第三類型模型分子雙光子激發螢光強度與激發光源強度關係圖 62
圖3-18 第一和第三類型模型分子結構分析圖 63
圖3-19 第二類型模型分子結構分析圖 64
1H-NMR spectrum of compound 2 (solvent: CDCl3) 114
13C-NMR spectrum of compound 2 (solvent: CDCl3) 114
1H-NMR spectrum of compound 3 (solvent: CDCl3) 115
13C-NMR spectrum of compound 3 (solvent: CDCl3) 115
1H-NMR spectrum of compound 4 (solvent: CDCl3) 116
13C-NMR spectrum of compound 4 (solvent: CDCl3) 116
1H-NMR spectrum of compound 6 (solvent: CDCl3) 117
13C-NMR spectrum of compound 6 (solvent: CDCl3) 117
1H-NMR spectrum of compound 7 (solvent: CDCl3) 118
13C-NMR spectrum of compound 7 (solvent: CDCl3) 118
1H-NMR spectrum of compound 8 (solvent: CDCl3) 119
13C-NMR spectrum of compound 8 (solvent: CDCl3) 119
1H-NMR spectrum of compound 9 (solvent: CDCl3) 120
13C-NMR spectrum of compound 9 (solvent: CDCl3) 120
1H-NMR spectrum of compound 10 (solvent: CDCl3) 121
13C-NMR spectrum of compound 10 (solvent: CDCl3) 121
1H-NMR spectrum of compound 11 (solvent: CDCl3) 122
13C-NMR spectrum of compound 11 (solvent: CDCl3) 122
1H-NMR spectrum of compound 12 (solvent: CDCl3) 123
13C-NMR spectrum of compound 12 (solvent: CDCl3) 123
1H-NMR spectrum of compound 13(solvent: CDCl3) 124
13C-NMR spectrum of compound 13 (solvent: CDCl3) 124
1H-NMR spectrum of compound 14 (solvent: (CD3)2SO) 125
13C-NMR spectrum of compound 14 (solvent: (CD3)2SO) 125
1H-NMR spectrum of compound 15 (solvent: CDCl3) 126
13C-NMR spectrum of compound 15 (solvent: CDCl3) 126
1H-NMR spectrum of compound 16 (solvent: CDCl3 127
13C-NMR spectrum of compound 16 (solvent: CDCl3) 127
1H-NMR spectrum of compound 17 (solvent: CDCl3) 128
13C-NMR spectrum of compound 17 (solvent: CDCl3) 128
1H-NMR spectrum of compound 18 (solvent: CDCl3) 129
13C-NMR spectrum of compound 18 (solvent: CDCl3) 129
1H-NMR spectrum of compound 19 (solvent: CDCl3) 130
13C-NMR spectrum of compound 19 (solvent: CDCl3) 130
1H-NMR spectrum of compound 20 (solvent: CDCl3) 131
13C-NMR spectrum of compound 20 (solvent: CDCl3) 131
1H-NMR spectrum of compound 21 (solvent: CDCl3) 132
13C-NMR spectrum of compound 21 (solvent: CDCl3) 132
1H-NMR spectrum of compound 22 (solvent: CDCl3) 133
13C-NMR spectrum of compound 22 (solvent: CDCl3) 133
1H-NMR spectrum of compound 23 (solvent: CDCl3) 134
13C-NMR spectrum of compound 23 (solvent: CDCl3) 134
1H-NMR spectrum of compound 25 (solvent: CDCl3) 135
13C-NMR spectrum of compound 25 (solvent: CDCl3) 135
1H-NMR spectrum of compound 26 (solvent: CDCl3) 136
13C-NMR spectrum of compound 26 (solvent: CDCl3) 136
1H-NMR spectrum of compound 27 (solvent: CDCl3) 137
13C-NMR spectrum of compound 27 (solvent: CDCl3) 137
1H-NMR spectrum of compound 28 (solvent: CDCl3) 138
13C-NMR spectrum of compound 28 (solvent: CDCl3) 138
1H-NMR spectrum of compound 29 (solvent: CDCl3) 139
13C-NMR spectrum of compound 29 (solvent: CDCl3) 139
1H-NMR spectrum of compound 30 (solvent: CDCl3) 140
13C-NMR spectrum of compound 30 (solvent: CDCl3) 140
1H-NMR spectrum of compound 31 (solvent: CDCl3) 141
13C-NMR spectrum of compound 31 (solvent: CDCl3) 141
1H-NMR spectrum of compound 32 (solvent: CDCl3) 142
13C-NMR spectrum of compound 32 (solvent: CDCl3) 142
1H-NMR spectrum of compound 33 (solvent: CDCl3) 143
13C-NMR spectrum of compound 33 (solvent: CDCl3) 143
1H-NMR spectrum of compound 35 (solvent: CDCl3) 144
13C-NMR spectrum of compound 35 (solvent: CDCl3) 144
1H-NMR spectrum of compound 37 (solvent: CDCl3) 145
13C-NMR spectrum of compound 37 (solvent: CDCl3) 145
1H-NMR spectrum of compound 38 (solvent: CDCl3) 146
13C-NMR spectrum of compound 38 (solvent: CDCl3) 146
1H-NMR spectrum of compound 39 (solvent: CDCl3) 147
1H-NMR spectrum of compound 40 (solvent: (CD3)2SO) 148
13C-NMR spectrum of compound 40 (solvent: (CD3)2SO) 148
1H-NMR spectrum of compound 41 (solvent: CDCl3) 149
13C-NMR spectrum of compound 41 (solvent: CDCl3) 149
1H-NMR spectrum of compound 42 (solvent: CDCl3) 150
13C-NMR spectrum of compound 42 (solvent: CDCl3) 150
1H-NMR spectrum of compound 44 (solvent: CDCl3) 151
13C-NMR spectrum of compound 44 (solvent: CDCl3) 151
1H-NMR spectrum of compound 45 (solvent: CDCl3) 152
13C-NMR spectrum of compound 45 (solvent: CDCl3) 152
1H-NMR spectrum of compound 46 (solvent: CDCl3) 153
13C-NMR spectrum of compound 46 (solvent: CDCl3) 153參考文獻 第一章
[1] Göppert-Mayer, M., Ann. Phys., 1931, 9, 273-295
[2] Kaiser, W.; Garret, C. G.B., Phys. Rev. Lett., 1961, 7, 229-231
[3] He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N., Chem. Rev., 2008, 108, 1245-1330
[4] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; Guang S. He; Paras N. Prasad, Chem. Mater., 1998,10(7), 1863-1874
[5] Albota, M.; Beljonne, D.; Brédas, J. -L.; Ehrlich, J. E.; Fu, J. -Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-M, D.; Perry, J. W.; Röckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X. –L., Science, 1998, 281 (5383), 1653-1656
[6] Mukesh P. Joshi, J. Swiatkiewicz, Faming. Xu, Paras N. Prasad, Opt. Lett. 1998, 23 , 1742-1744.
[7] Mikhail Drobizhev, Aliaksandr Karotki, and Aleksander Rebane, Charles W. Spangler, Opt. Lett. 2001, 26, 1081-1083.
[8] Sung-Jae Chung, Kyoung-Soo Kim, Tzu-Chau Lin, Guang S. He, Jacek Swiatkiewicz, Paras N. Prasad, J. Phys. Chem. B 1999, 103, 10741-10745.
[9] Mikhail Drobizhev, Aliaksandr Karotki, Yuliya Dzenis, and Aleksander Rebane, Zhiyong Suo and Charles W. Spangler, J. Phys. Chem. B 2003, 107, 7540-7543.
第二章
[1] Tzu-Chau Lin, Yi-You Liu, May-Hui Li, Ying-Hsuan Lee, Dyes and Pigments, 2014, 109, 72-78. K. Park, G. Bae, J. Moon, J. Choe, K. H. Song and S. Lee, J. Org. Chem. 2010, 75, 6244-6251.
[2] Bruce A. Reinhardt, Lawrence L. Brott, Stephen J. Clarson, Ann G. Dillard, Jayprakash C. Bhatt, Ramaurthi Kannan, Lixiang Yuan, Guang S. He, Paras N. Prasad, Chem. Mater., 1998, 10, 1863-1874.
[3] Sukrawee Pansay, Narid Prachumrak, Siriporn Jungsuttiwong, Tinnagon Keawin, Taweesak Sudyoadsuk, Vinich Promarak, Tetrahedron Letters. 2012, 53, 4568–4572.
[4] Kwang-Hoi Lee, Kazuhide Morino , Atsushi Sudo , Takeshi Endo, Polym. Bull. 2011, 67, 227–236.
[5] J. P. Wolfe, S. Wagaw and S. L. Buchwald, J. Am. Chem. Soc. 1996, 118, 7215-7216.
[6] S. Kajigaeshi, T. Kakinami, M. Moriwaki and Tanaka, Bull. Chem. Soc. Jpn. 1989, 62, 439-443.
[7] J. M. Hancock, A. P. Gifford and S. A. Jenekhe, Chem. Mater. 2006, 18, 4924-4932.
[10] M. J. Lee, M. S. Kang and Y. H. Kim, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 3942-3949.
[11] R. Grisorio, P. Mastrorilli and C. F.Nobile, Tetrahedron Lett., 2004, 45 (28), 5367-5370.
[12] M. L. Barbosa, G. M. Melo, Y. K. da Silva, Eur. J. Med. Chem. 2009, 44 (9), 3612-20.
[13] X. Li, D. Wang, J. Wu, W. Xu, Synthetic Communications 2005, 35, 2553.
[14] Gourab Dey, Abhishek Gupta, Trinetra Mukherjee, Pankaj Gaur, Abhishek Chaudhary, Subhra Kanti Mukhopadhyay, Chayan K. Nandi, Subrata Ghosh, ACS Appl. Mater. Interfaces., 2014, 6, 10231-10237.
[15] X. Li, Y. Xiao, X. Qian, Org. Lett. 2008, 10, 2885-2888.
[16] Eric B. Stephens, James M. Tour, Macromolecules, 1993, 26, 2420-2427.
[17] Björn Kobin, Lutz Grubert, Sylke Blumstengel, Fritz Henneberger, Stefan Hecht, J. Mater. Chem., 2012, 22, 4383-4390.
[18] Virginia Bravo, Salvador Gil, Ana M. Costero , María N. Kneeteman, Ursula Llaosa, Pedro M.E. Mancin, Luís E. Ochando, Margarita Parra, Tetrahedron, 2012, 68, 4882-4887.
[19] Yasuhiro Shirai, Andrew J. Osgood, Yuming Zhao, Yuxing Yao, Lionel Saudan, Hanbiao Yang, Chiu Yu-Hung, Lawrence B. Alemany, Takashi Sasaki, Jean-François Morin, Jason M. Guerrero, Kevin F. Kelly, and James M. Tour., J. Am. Chem. Soc., 2006, 128, 4854-4864.
第三章
[1] Jon R. Askim; Morteza Mahmoudi;Kenneth S. Suslick, Chem. Soc. Rev., 2013, 42, 8649-8682
[2] J. A. Gardecki; M. Maroncelli, Appl. Spectrosc., 1998, 52, 1179-1189
[3] G. A. Reynold; K. H. Drexhage, Opt. Commun., 1975, 13, 222-225
[4] Tzu-Chau Lin, Ying-Hsuan Lee, Bor-Rong Huang, Chia-Ling Hu, Yu-Kai Li,Tetrahedron, 2012, 68, 4935-4949
[5] Tzu-Chau Lin, Yi-You. Liu, May-Hui Li, Ying-Hsuan Lee, Dyes and Pigments., 2014, 109, 72-80指導教授 林子超 審核日期 2015-10-2 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare