參考文獻 |
G. J. Puppels, F. F. M. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature. 347, 301-303 (1990).
N. M. Sijtsema, S. D. Wouters, C. J. De Grauw, C. Otto, and J. Greve, “Confocal Direct Imaging Raman Microscope: Design and Applications in Biology,” Appl. Spectrosc. 52, 348-355 (1998).
T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” Phys. Chem. B. 104, 10549-10556 (2000).
李展進,以奈米球微影術製作表面電漿增強拉曼基板,國立中央大學光電所碩士論文,中華民國一零三年。
S. H. Chang, “Modeling and Design of Ag, Au, and Cu Nanoplasmonic Structures for Enhancing the Absorption of P3HT:PCBM-Based Photovoltaics,” IEEE. Photonic. 5, 4800509 (2013).
P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” Phys. Chem. B. 110, 7238-7248 (2006).
P. Olk, Optical Properties of Individual Nano-Sized Gold Particle Pairs (IAPP, TU Dresden, 2008).
E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity,” Small 1, 325-327 (2005).
O. Salata, “Applications of Nanoparticles in Biology and Medicine,” J. Nanobiotechnology 2, 3 (2004)
P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized Gold Nanoparticles and Their Biomedical Applications,” Nanomaterials 1, 31-63 (2011).
R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological Applications of Gold Nanoparticles,” Chem. Soc. Rev. 37, 1896-1908 (2008).
B. Duncan, C. Kim, and V. M. Rotello, “Gold Nanoparticle Platforms as Drug and Biomacromolecule Delivery Systems,” J. Control. Release. 148, 122-127 (2010).
T. Tencomnao, A. Apijaraskul, V. Rakkhithawatthana, S. Chaleawlert-umpon, N. Pimpa, W. Sajomsang, and N. Saengkrit, “Gold/Cationic Polymer Nano-Scaffolds Mediated Transfection for Non-Viral Gene Delivery System,” Carbohyd. Polym. 84, 216-222 (2011).
A. Sharma, A. Tandon, J. C. K. Tovey, R. Gupta, J. D. Robertson, J. A. Fortune, A. M. Kibanov, J. W. Cowden, F. G. Rieger, and R. R. Mohan, “Polyethylenimine-Conjugated Gold Nanoparticles: Gene Transfer Potential and Low Toxicity in the Cornea,” Nanomed. Nanotechnol. 7, 505-513 (2011).
S. Wang, K. J. Chen, T. H. Wu, H. Wang, W. Y. Lin, M. Ohashi, P. Y. Chiou, and H. R. Tseng, “Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells,” Angew. Chem. Int. Edit. 49, 3777-3781 (2010).
T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic Effects of Gold Nanorods on Tumor Cells, ” Nanomedicine (Lond) 2, 125-132 (2007).
Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman Dye-Labeled Nanoparticle Probes for Proteins,” J. Am. Chem. Soc. 125, 14676-14677 (2003).
A. R. Bizzarri, and S. Cannistraro, “SERS Detection of Thrombin by Protein Recognition Using Functionalized Gold Nanoparticles,” Nanomed. Nanotechnol. 3, 306-310 (2007).
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “7× 7 Reconstruction on Si(111) Resolved in Real Space,” Phys. Rev. Lett. 50, 120-123 (1983)
G. Binning and H. Rohrer, “In Touch With Atoms,” Rev. Mod. Phys. 71, S324-S330 (1999).
G. Binning, H. Rohrer, Ch. Gerber, and E. Wibel, “Surface Studies by Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57 (1982).
J. A. Stroscio, and W. J. Kaiser, Scanning Tunneling Microscopy (Academic Press, New York, 1993).
M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of Electrons to Quantum Corrals on a Metal Surface,” Science 262, 218-220 (1993).
G. Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56, 930-933 (1986).
D. M. Schaefer, R. Reifenberger, A. Patil, and R. P. Andres, “Fabrication of Two‐Dimensional Arrays of Nanometer‐Size Clusters with the Atomic Force Microscope,” Appl. Phys. Let. 66, 1012 (1995).
E. Hecht, Optics, 4th ed (Addison Wesley, San Francisco, 2002).
K. Svoboda, and S. M. Block, “Biological Applications of Optical Forces,” Annu. Rev. Bioph. Biom. 23, 247-285 (1994).
S. Stenholm, “The Semiclassical Theory of Laser Cooling,” Rev. Mod. Phys. 58, 699-739 (1986).
A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156 (1970).
A. Ashkin, and J. M. Dziedzic, “Optical Levitation By Radiation Pressure,” App. Phys. Lett. 19, 283 (1971).
A. Ashkin, and J. M. Dziedzic, “Optical Levitation in High Vacuum,” App. Phys. Lett. 28, 333, (1975).
A. Ashkin, and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
A. Ashkin and J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres By Light Scattering,” Appl. Optics. 20, 1803-1814 (1981).
A. Ashkin, “Trapping of Atoms by Resonance Radiation Pressure,” Phys. Rev. Lett. 40, 729 (1978).
A. Ashkin, and J. P. Gordon, “Cooling and Trapping of Atoms By Resonance Radiation Pressure,” Opt. Lett. 4, 161-163 (1979).
A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett. 11, 288-290 (1986).
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and Manipulation of Single Cells Using Infrared Beams,” Nature. 330, 769-771 (1987).
A. Ashkin, and J. M. Dziedzic, “Optical trapping and Manipulation of Viruses and Bacteria,” Science. 235, 1517-1520 (1987).
K. Ajito, “Combined Near-Infrared Raman Microprobe and Laser Trapping System: Application to the Analysis of a Single Organic Microdroplet in Water,” Appl. Spectrosc. 52, 339-342 (1998).
R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a Single-Beam Gradient-Force Optical Trap for Dielectric Particles in Air,” Opt. Lett. 22, 816-818 (1997).
A. Ashkin, “Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophys. J. 61, 569-582 (1992).
K. Svoboda, and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930-932 (1994).
S. Sato, Y. Harada, and Y. Waseda, “Optical Trapping of Microscopic Metal Particles,” Opt. Lett. 19, 1807-1809 (1994).
H. Furukawa, and I. Yamaguchi, “Optical trapping of Metallic Particles By a Fixed Gaussian Beam,” Opt. Lett. 23, 216-218 (1998).
D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov,and E. D. Fabrizio, “Dynamic Multiple Optical Trapping by Means of Diffractive Optical Elements,” Microelectron. Eng. 73–74, 927–932 (2004).
V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes Using a Self-Reconstructing Light Beam,” Nature 419, 145-147 (2002).
M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and Manipulation of Three-Dimensional Optically Trapped Structures,” Science 296, 1101–1103 (2002).
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation Using Silicon Photonic Crystal Resonators,” Nano. Lett. 10, 99−104 (2010).
P. Kang, X. Serey, Y. F. Chen, and D. Erickson, “Angular Orientation of Nanorods Using Nanophotonic Tweezers,” Nano. Lett. 12, 6400–6407 (2012).
Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled Photonic Manipulation of Proteins and Other Nanomaterials,” Nano. Lett. 12, 1633−1637 (2012).
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-Induced Back-Action Optical Trapping of Dielectric Nanoparticles,” Nat. Phys. 5, 915−919 (2009).
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and Rotating Nanoparticles Using a Plasmonic Nano-Tweezer With an Integrated Heat Sink,” Nat. Commun. 2, 469 (2011).
S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano. Lett. 10, 2408−2411 (2010).
P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical Trapping of Rayleigh Particles Using a Gaussian Standing Wave," Opt. Commun. 151, 273-275 (1998).
R. J. Cook, and R. K. Hill, “An Electromagnetic Mirror for Neutral Atoms,” Opt. Commum. 43, 258-260 (1982).
S. Kawata, and T. Sugiura, “Movement of Micrometer-Sized Particles in the Evanescent Field of a Laser Beam,” Opt. Lett. 17, 772-774 (1992).
S. Kawata, and T. Tani, “Optically Driven Mie Particles in an Evanescent Field Along a Channeled Waveguide,” Opt. Lett. 21, 1768-1770 (1996).
T. Tanaka, and S. Yamamoto, “Optically Induced Propulsion of Small Particles in an Evenescent Field of Higher Propagation Mode in a Multimode, Channeled Waveguide,” Appl. Phys. Lett. 77, 3131 (2000).
L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of Gold Nanoparticles on Optical Waveguides,” Opt. Commun. 208, 117-124 (2002).
L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, “Manipulation of Colloidal Gold Nanoparticles in the Evanescent Field of a Channel Waveguide,” Appl. Phys. Lett. 76, 1993-1995 (2000).
J. P. Hole, J. S. Wilkinson, K. Grujic, and O. G. Hellesø, “Velocity Distribution of Gold Nanoparticles trapped on an Optical Waveguide,” Opt. Express 13, 3896-3901 (2005).
John Patrick Hole, The Control of Gold and Latex Particles on Optical Waveguides, Doctoral Dissertation, University of Southampton (2005).
B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic Trapping and Transport on Solid Core Waveguides Within a Microfluidic Device,” Opt. Express. 15, 14322-14334 (2007).
A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical Manipulation of Nanoparticles and Biomolecules in Sub-Wavelength Slot Waveguides,” Nature 457, 71-75 (2009).
L. Tong, V. D. Miljković, and M. Käll, “Alignment, Rotation, and Spinning of Single Plasmonic Nanoparticles and Nanowires Using Polarization Dependent Optical Forces,” Nano. Lett. 10, 268–273 (2010).
A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser Trapping of Colloidal Metal Nanoparticles,” ACS. Nano. 9, 3453-3469 (2015).
E. Verpoorte, “Chip Vision-Optics for Microchips,” Lab. Chip. 3, 42N-52N (2003).
K. B. Mogensen, K. Henning, and J. P. Kutter, “Recent Developments in Detection for Microfluidic Systems,” Electrophoresis 25, 3498–3512 (2004).
D. Psaltis, S. R. Quake, and C. Yang, “Developing Optofluidic Technology Through the Fusion of Microfluidics and Optics,” Nature. 442, 381-386 (2006).
O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical Trapping and Manipulation of Nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
M. Ploschner, T. Čižmár, M. Mazilu, A. D. Falco, and K. Dholakia, “Bidirectional Optical Sorting of Gold Nanoparticles,” Nano. Lett. 12, 1923–1927 (2012).
T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated Single-Cell Manipulation and Sorting by Light Trapping,” Appl. Opt. 26, 5311-5316 (1987).
K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical Propulsion of Microspheres Along a Channel Waveguide Produced by Cs+ Ion-Exchange in Glass,” Opt. Commun. 239, 227–235 (2004).
M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic Sorting in an Optical Lattice,” Nature. 426, 421–424 (2003).
M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic Sorting of Mammalian Cells by Optical Force Switching,” Nat. Biotechnol. 23, 83–87 (2005).
G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-Dimensional Structures Using Programmable Holographic Optical Tweezers,” Opt. Express 12, 5475–5480 (2004).
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating Hot Nanoparticle Pairs for Surface-Enhanced Raman Spectroscopy through Optical Manipulation,” Nano. Lett. 6, 2639–2641 (2006).
P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized Gold Nanoparticles and Their Biomedical Applications,” Nanomaterials. 1, 31-63 (2011).
Drude and Paul , “Zur Elektronentheorie der metalle,” Annalen der Physik 306, 566 (1900).
P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370-4379 (1972).
M. A. Oral, R. J. Bell, J. R. W. Alexader, L. L. Long, and M. R. Querry, “Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493-4499 (1985).
A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Appl. Optics 37, 5271-5283 (1998)
D. Barchiesi and T. Grosges, “Fitting the Optical Constants of Gold, Silver, Chromium, Titanium, and Aluminum in the Visible Bandwidth,” J. Nanophotonics 8, 083097 (2014)
C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
J. Y. Walz, “Ray Optics Calculation of the Radiation Forces Exerted on a Dielectric Sphere in an Evanescent Field,” Appl. Optics 38, 5319-5330 (1999).
G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Lpz. 25, 377-445 (1908).
Christian Mätzler. Matlab Functions for Mie Scattering and Absorption Version 2. In IAP Research Report; University of Bern, 2002.
H. Chew, D. S. Wang, and M. Kerker, “Elastic Scattering of Evanescent of Electromagnetic Waves,” Appl. Optics 18, 2679-2687 (1979).
R. Wannemacher, A. Pack, and M. Quinten, “Resonant Absorption and Scattering in Evanescent Fields,” Appl. Phys. B 68, 225-232 (1999).
M. Quinten, A. Pack, and R. Wannemacher, “Scattering and Extinction of Evanescent Waves by Small Particles,” Appl. Phys. B 68, 87-92 (1999).
P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic Force on a Metallic Particle in the Presence of a Dielectric Surface,” Phys. Rev. B 62, 11185–11191 (2000).
V. Yannopapas, “Optical Forces Near a Plasmonic Nanostructure,” Phys. Rev. B 78, 045412 (2008).
M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics 2, 021875 (2008).
G. K. Batchelor, An Introduction to Fluidic Dynamics (Cambridge University, 1967)
T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Foundations of Heat Transfer 6th edition (John wiley & Sons, 2011)
Z. Duan, B. He, and Y. Duan, “Sphere Drag and Heat Transfer,” Nat. Sci. Rep. 5 12304 (2015).
Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, “The Role of Interparticle and External Forces In Nanoparticle Assembly,” Nat. Mater. 7, 527-538 (2008)
C. Kittel, Elementary Statistical Physics 3rd edition (John wiley and Sons, New York, 1964)
D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] ,” Am. J. Phys. 65, 1079-1081 (1997).
C. Van Oss, The Properties of Water and Their Role in Colloidal and Biological Systems 1st edition (Academic Press, Netherlands, 2008)
J. N. Israelachvili, Intermolecular and Surface Forces 3rd edition (Academic Press, Lodon, 2011)
H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena 1st edition (Academic Press, Tokyo, 2006)
S.Yu. Shulepov and G. Frens, “Surface Roughness and Particle Size Effect on the Rate of Perikinetic Coagulation: Experimental,” J. Colloid. Interf. Sci. 182, 388-394 (1996).
Y. Gu and D. Liy, “The Zeta-Potential of Glass Surface in Contact with Aqueous Solutions,” J. Colloid. Interf. Sci. 226, 328-339 (2000).
C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, Norwell, 2003).
呂宛珊,鈉鉀離子交換波導之製作及其表面消逝波之研究,國立中央大學光電所碩士論文,中華民國一零一年。
G. Lifante, Integrated Photonics: Fundamentals (John wiley and Sons, England, 2003).
Rsoft Incorporated. BeamPROP 6.0 User Guide, 2005
T. Findakly, “Glass Waveguides by Ion Exchange: a Review,” Opt. Eng. 24, 244-250 (1985).
F. Rehouma and K. E. Aiadi, “Glasses for Ion-Exchange Technology,” Int. J. Commun. 1, 148-155 (2008).
G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, and R. M. Delarue, “Planar Optical Waveguides Formed by Silver-Ion Migration in Glass,” IEEE J. Quantum Elect. QE-13, 192-200 (1977).
J. Albert and G. L. Yip, “Refractive-Index Profiles of Planar Waveguides Made by Ion-Exchange in Glass,” Appl. Optics 24, 3692-3693 (1985).
T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, “Semiconductor‐Doped Glass Ion‐Exchanged Waveguides,” Appl. Phys. Lett. 49, 1403 (1986).
J. E. Gortych and D. G. Hall, “Fabrication of Planar Optical Waveguides by K+-Ion Exchange in BK7 and Pyrex Glass,” IEEE J. Quantum Elect. QE-22, 892-895 (1986).
R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguide: A Review,” J. Lightwave Technol. 6, 984-1002 (1988).
A. Brandenburg, “Stress in Ion-Exchanged Glass Waveguides,” J. Lightwave Technol. LT-4, 1580-1593 (1986).
J. Albert, G. L. Yip, “Stress-Induced Index Change For K+-Na+ Ion Exchange In Glass,” Electron. Lett. 23, 737-738 (1987).
G. L. Yip and J. Albert, “Characterization of Planar Optical Waveguides by K+-Ion Exchange In Glass,” Opt. Lett. 10, 151-153 (1985).
R. G. Walker, C. D. W. Wilkinson, and J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion-Exchange In Glass. 1: The Propagation Characteristics of Stripe Ion-Exchanged Waveguides; A Theoretical and Experimental Investigation,” Appl. Optics 22, 1923-1928 (1983).
M. N. Weiss and R. Srivastava, “Determination of Ion-Exchanged Channel Waveguide Profile Parameters by Mode-Index Measurements,” App. Optics 34, 455-458 (1995).
K. Tsutsumi, H. Hirai, and Y. Yuba, “Characteristics of Swelling of Sodium-Potassium Ion-Exchanged Glass Waveguides,” Electron. Lett. 22, 1299-1230 (1986).
J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano. Lett. 12, 2817-2821 (2012).
B. N. Kim, J. A. Diaz, S. G. Hong, S. H. Lee, and L. P. Lee, “Dark-Field Smartphone Microscope with Nanoscale Resolution For Molecular Diagnostics,” MicroTAS, 2247-2249, October 26-30 (2014).
Nien-Sheng Cheng, “Formula For the Viscosity of a Glycerol-Water Mixture,” Ind. Eng. Chem. Res. 47, 3285-3288 (2008).
S. Duhr and D. Braun, “Two-Dimensional Colloidal Crystals Formed by Thermophoresis and Convection,” Appl. Phys. Lett. 86, 131921 (2005).
M. P. Hughes and H. Morgan, “Dielectrophoretic Trapping of Single Sub-Micrometre Scale Bioparticles,” J. Phys. D: Appl. Phys. 31, 2205-2210 (1998). |