博碩士論文 102226061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.135.214.226
姓名 朱庭楷(Ting-Kai Chu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 膽固醇液晶摻雜十二氫基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之雙穩態及應用
(Bistability and applications of 12-hydroxystearic acid-doped cholesterics in poly(n-vinylcarbazole) film-coated liquid crystal cells)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 隨著時代演進,液晶領域越趨成熟,有許多先進的研究和應用在電光控制領域中實現,本論文主要研究無須持續施加電壓的穩態顯示元件,該類元件可應用於廣告刊板等用途。此外,此液晶元件亦有可重覆抹除及寫入的特性,主要透過切換雙穩態結構技術,將可決定液晶結構穩定於焦錐態或平面態。根據實驗結果,處於特定穩態的結構若沒有刻意施加外在變因,則將可持續穩定存在至少兩週。本研究主要是利用十二氫氧基硬酯酸以穩固膽固醇液晶的穩態,將膽固醇液晶注入鍍有聚乙烯基咔唑薄膜的液晶盒內,透過控制溫度、施加電壓以及照射紫外光於液晶盒上寫入的圖案。自組成材料-十二氫氧基硬酯酸(簡稱HSA)可藉由控制溫度以決定其氫鍵斷裂與否,若是加熱至氫鍵斷裂,並施加小幅度之電壓,則可控制膽固醇液晶處在焦錐態,此時再透過快速降溫至室溫,則可透過重組之HSA結構得到處於焦錐穩態之膽固醇液晶。且即使是長螺距且小間隙之膽固醇液晶盒,若是沒有自組成材料用以穩固液晶排列,則最穩定之液晶排列為平面態,但若有自組成材料用以穩固液晶排列,則可得焦錐穩態。反之,若欲穩固於平面態膽固醇,則需緩慢降溫使HSA均勻地重組。最後利用此製程應用於製作顯示元件,透過以紫外光照射PVK後可使PVK具備導電特性,藉此可消除內建電場並提升有效電場,透過此機制透過光罩照射紫外光於液晶盒上,使某些區域照光及某些區域不照光,如此可實現利用電光熱法寫入欲顯示之圖案。
摘要(英) Nowadays, liquid crystal (LC) technology is getting more and more mature due to its novel developments and applications in electro-optical fields. Recently, we would like to invent some new devices which can be applied to billboards, electronic tags, etc. By using bi-stable textures of cholesteric LCs, the structures can be chosen to be stabilized in the desired state. According to the experimental results, it shows that it can be kept in the desired state for more than two weeks.
This study presents the multi-stable and reusable LC display devices using 12-hydroxysteric acid (HSA)-doped LCs in a poly(N-vinylcarbazole) (PVK) film-coated LC cell. Through the branches of hydrogen-bond of HSA, the structures of the cholesteric LC can be stabilized. By increasing the temperature over the melting point of HSA, the hydrogen bonds break down and HSA molecules dissolve in the LC host. If we keep increasing the temperature to the clearing point of the LC host, the cholesteric LC will turn into its isotropic state. With the application of suitable external voltages onto the LC cell at the temperature between the melting points of HSA and the clearing point of LC, we can get the focal conic state of cholesteric LC. Keep applying voltage onto the LC cell and then decrease the temperature of the LC cell to room temperature. After that, keeping at the room temperature and applying a suitable voltage onto the LC cell to make sure the structures are stable enough. Through the method described above, the LC cell will be kept in the state of the focal conic. If we decrease the temperature of the LC cell slowly without applying any voltage, the LC cell will present planar textures with the conditions of long pitch length and small cell gap. Because of the homogeneous alignment films, long pitch length, and small cell gap, the LC cell will tend to stay in the planar textures without applying any voltage. As the two methods mentioned above, the LC cell can have two different stable structures.
According to the method described above, PVK films are coated onto the LC cell and expose the PVK to UV light through a photo-mask having the desired patterns simultaneously. In the meantime, an external voltage is applied to the LC cell. The regions with UV exposure present focal conic textures, and the regions without UV exposure present planar textures. We cool down the temperature slowly and apply a suitable voltage simultaneously. Thereafter, the LC cell will have the pattern we want.
關鍵字(中) ★ 膽固醇液晶
★ 雙穩態顯示
★ 聚乙烯基咔唑
★ 十二氫基硬酯酸
關鍵字(英) ★ Bistability
★ 12-hydroxystearic acid
★ poly(n-vinylcarbazole)
論文目次 目錄
中文摘要 i
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究動機 1
1-3論文架構 2
第二章 液晶簡介 4
2-1 液晶的歷史 4
2-2 液晶性質 5
2-3 液晶的種類 6
2-3-1 向列型液晶 (Nematic liquid crystal) 7
2-3-2 膽固醇液晶(Cholesteric liquid crystal) 8
2-3-3 近晶相液晶(Smectic liquid crystal) 12
2-3-4 圓盤狀液晶(Discotic LCs) 15
2-4 液晶物理 15
2-4-1 液晶的光學異向性 15
2-4-2 介電異向性(dielectric anisotropy) 20
2-4-3 液晶的連續彈性體理論 22
2-4-4 溫度對液晶折射率之影響 22
第三章 相關理論介紹 24
3-1 自組成(self-assembly)材料之基本原理與特性 24
3-1-1 氫鍵(hydrogen-bond) 24
3-1-2 液晶摻雜自組成材料與溫度之相關特性 25
3-2 聚乙烯基咔唑[poly(N-vinylcarbazole), PVK] 28
3-2-1 向列型液晶在聚乙烯基咔唑薄膜下之配向理論 28
3-2-2 聚乙烯基咔唑薄膜與電雙層之相關特性 31
3-3 液晶散射元件相關理論 33
3-3-1 聚合物穩定膽固醇型液晶結構[Polymer-stabilized Cholesteric Textures (PSCT)] 33
3-3-2 高分子分散型液晶[Polymer-dispersed Liquid Crystals (PDLCs)] 36
3-3-3 膽固醇液晶螺距對於雙穩態之影響 38
第四章 樣品製作與實驗方法及架設 40
4-1 材料介紹 40
4-2 液晶盒樣品製作流程 43
4-2-1 液晶混合物配製 43
4-2-2 玻璃基板之處理流程 44
4-2-3 液晶盒製作及液晶注入流程 45
4-3 實驗光路架設及實驗方法 46
4-3-1 空液晶盒之間隙厚度量測 46
4-3-2 偏光顯微鏡觀察液晶樣品結構 48
第五章 實驗結果與討論 52
5-1 運用自組成材料控制膽固醇液晶之雙穩態 52
5-1-1 觀察自組成材料HSA對於液晶結構及相變點之影響 54
5-1-2 無摻雜HSA之膽固醇液晶施加偏壓後之現象觀察 63
5-1-3 運用自組成材料穩固膽固醇液晶於平面態 66
5-1-4 運用自組成材料穩固膽固醇液晶於焦錐態 75
5-2 運用PVK薄膜以及HSA製作可複寫的膽固醇液晶顯示元件 79
5-2-1 量測樣品於不同溫度並照射不同強度之紫外光時的電壓-穿透曲線 83
5-2-2 利用表面鍍有PVK薄膜之摻雜HSA的膽固醇液晶盒製作雙穩態膽固醇液晶顯示元件 89
第六章 結論與未來展望 97
6-1 結論 97
6-2 未來展望 99
參考文獻 102
參考文獻 [1] B. Bahaodur, Liquid crystals-applications and uses (World Scientific Press, 1990).
[2] O. Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[3] D. Dunmur and T. Sluckin, Soap, Science, and Flat-screen TVs: a history of liquid crystals (Oxford University Press, 2011).
[4] H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82, 3168 (2003).
[5] P. J. Collings and M. Hird, Introduction to liquid crystals chemistry and physics (Taylor & Francis Ltd, 1997).
[6] E. G. Virga, Variational theories for liquid crystals (World Scientific, 1993).
[7] I. C. Khoo and S. T. Wu, Optics and nonlinear optics of liquids (World scientific, 1993).
[8] O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855 (1999).
[9] M. Marinelli and F. Mercuri, “Effects of fluctuations in the orientational order parameter in the cyanobiphenyl (nCB) homologous series,” Phys. Rev. E 61, 1616 (2000).
[10] H. Keller, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 1 (1973).
[11] G. W. Gray, Thermotropic liquid crystals (New York: Wiley, 1987).
[12] W. H. de Jeu, Physical properties of liquid crystalline materials (Gordon & Breach, 1980).
[13] 謝承偉,表面配向對膽固醇藍相液晶光電特性影響之研究(國立中山大學物理研究所, 2011).
[14] D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: materials and drive schemes,” Annu. Rev. Mater. Sci. 27, 117 (1996).
[15] S. Chandrasekjar, C. Frank, J. D. Litster, W. H. De Jeu, and L. Lei, Liquid Crystals of Disc-Like Molecules and Discussion, (the Royal Society, London, 1983).
[16] G. R. Fowles, Introduction to Modern Optic, 2nd ed., (University of Utah, New York, 1975).
[17] P. G. de Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).
[18] L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer-Verlag Publishing Co., 1994).
[19]張志榮,氫氧基硬酯酸參雜向列型晶材料之多重穩態特性及其應用之研究 (國立成功大學物理研究所, 2011).
[20] A. D. McNaught and A. Wilkinson, “Glossary of terms used in physical organic chemistry,” IUPAC, 66, 1123 (1994).
[21] N. Mizoshita, Y. Suzuki, K. Hanabusa, and T. Kato, “Bistable Nematic Liquid Crystals with Self-Assembled Fibers,” Adv. Mater. 17, 692-696 (2005).
[22] K. T. Cheng, Y. Tang, and C. K. Liu, “Electro-opto-thermal addressing bistable and re-addressable display device based on gelator-doped liquid crystals in a poly(N-vinylcarbazole) film-coated liquid crystal cell,” Opt. Express 24, 23572-23582 (2016).
[23] J. Stöhr, M.G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. 98–99, 189–207 (1999).
[24] M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12, 547 (2003).
[25] A. Mochizuki, T. Yoshihara, K. Motoyoshi, and S. Kobayashi, “An electric bilayer model of the transient current in a nematic liquid crystal cell,” Jpn. J. Appl. Phys. 29, 322 (1990).
[26] D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd., 2006).
[27] S. V. Pasechnik, V. G. Chigrinov, D. V. Shmeliova, Liquid Crystals: Viscous and Elastic Properies in Theory and Applications (John Wiley & Sons Press, 321, New York 2009).
[28] J. W. Doane, Polymer dispersed liquid crystal displays; Liquid crystals, applications and uses (World Scientific, Singapore, 1990).
[29] M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. 28, 837 (2003).
[30] J. Geng, C. Dong, L. Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89 081130 (2006).
[31] Andy. Y. G. Fuh, Z. H. Wu, K. T. Cheng, C. K. Liu, and Y. D. Chen, “Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals,” Opt. Express 21, 21840-21846 (2013).
[32] P.-O. Bussiere, A. Rivaton, S. Therias, and J.-L. Gardette, “Multiscale Investigation of the Poly(N-vinylcarbazole) Photoageing Mechanism,” J. Phys. Chem. B. 116, 802-812 (2012).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明