參考文獻 |
1. M. N. Baibich et al., Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).
2. G. Binasch, P. Grünberg, F. Saurenbach, W. J. P. r. B. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989).
3. M. N. Ali et al., Large, non-saturating magnetoresistance in WTe2. Nature 514, 205-208 (2014).
4. F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, R. J. Cava, Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys. 12, 272-277 (2016).
5. C. Shekhar et al., Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645-649 (2015).
6. T. Liang et al., Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280-284 (2015).
7. Y. J. Wang et al., Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun. 7, 13142 (2016).
8. P. Li et al., Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 (2017).
9. V. Fatemi et al., Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926-929 (2018).
10. Q. Ma et al., Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337-342 (2019).
11. S. Y. Xu et al., Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900-906 (2018).
12. Z. Y. Fei et al., Edge conduction in monolayer WTe2. Nat. Phys. 13, 677-682 (2017).
13. S. F. Wu et al., Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76-79 (2018).
14. Y. M. Shi et al., Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).
15. Z. Y. Fei et al., Ferroelectric switching of a two-dimensional metal. Nature 560, 336-339 (2018).
16. P. Sharma et al., A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).
17. D. MacNeill et al., Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300-305 (2017).
18. P. Li et al., Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nat. Commun. 9, 3990 (2018).
19. Y. J. Wang et al., Direct Evidence for Charge Compensation-Induced Large Magnetoresistance in Thin WTe2. Nano Lett. 19, 3969-3975 (2019).
20. Y. Zhou et al., Direct Synthesis of Large-Scale WTe2 Thin Films with Low Thermal Conductivity. Adv. Funct. Mater. 27, 1605928 (2017).
21. J. Kwak et al., Single-Crystalline Nanobelts Composed of Transition Metal Ditellurides. Adv. Mater. 30, 1707260 (2018).
22. J. D. Zhou et al., Large-Area and High-Quality 2D Transition Metal Telluride. Adv. Mater. 29, 1603471 (2017).
23. E. Z. Zhang et al., Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. Nano Lett. 17, 878-885 (2017).
24. C. H. Naylor et al., Large-area synthesis of high-quality monolayer 1T′-WTe2 flakes. 2D Mater. 4, 021008 (2017).
25. Y. Wu et al., Temperature-Induced Lifshitz Transition in WTe2. Phys. Rev. Lett. 115, 166602 (2015).
26. R. Kappera et al., Phase-engineered low-resistance contacts for ultrathin MoS 2 transistors. Nat. Mater. 13, 1128-1134 (2014).
27. H. Huang et al., Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 26, 172-179 (2016).
28. W. Zhao et al., Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chem.-Eur. J. 24, 15942-15954 (2018).
29. E. J. Sie et al., An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61-66 (2019).
30. S. Y. Xu et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613-617 (2015).
31. A. A. Soluyanov et al., Type-ii weyl semimetals. Nature 527, 495-498 (2015).
32. S. Jin et al., Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science 264, 413-415 (1994).
33. R. Vonhelmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant Negative Magnetoresistance in Perovskitelike La2/3ba1/3mnox Ferromagnetic-Films. Phys. Rev. Lett. 71, 2331-2333 (1993).
34. P. Alers, R. J. P. R. Webber, The magnetoresistance of bismuth crystals at low temperatures. Phys. Rev. 91, 1060 (1953).
35. F. Yang et al., Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335-1337 (1999).
36. Y. Wang et al., Origin of the turn-on temperature behavior in WTe2. Phys. Rev. B 92, 180402 (2015).
37. L. Wang et al., Tuning magnetotransport in a compensated semimetal at the atomic scale. Nat. Commun. 6, 8892 (2015).
38. D. Fu et al., Tuning the electrical transport of type II Weyl semimetal WTe 2 nanodevices by Ga+ ion implantation. Sci. Rep. 7, 12688 (2017).
39. D. Fu et al., Tuning the electrical transport of type II Weyl semimetal WTe2 nanodevices by Mo doping. Nanotech. 29, 135705 (2018).
40. X. Luo et al., Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes. Nanotech. 28, 145704 (2017).
41. Y. K. Luo et al., Hall effect in the extremely large magnetoresistance semimetal WTe2. Appl. Phys. Lett. 107, 182411 (2015).
42. V. Fatemi et al., Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2. Phys. Rev. B 95, 041410(R) (2017).
43. X. C. Huang et al., Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X 5, 031023 (2015).
44. C. Liu et al., Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity. Nat. Phys. 6, 419-423 (2010).
45. X. C. Pan et al., Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 6, 7805 (2015).
46. S. J. Tang et al., Quantum spin Hall state in monolayer 1T ′-WTe2. Nat. Phys. 13, 683-687 (2017).
47. J. J. P. r. Valasek, Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475 (1921).
48. H. M. Yau et al., Low-field Switching Four-state Nonvolatile Memory Based on Multiferroic Tunnel Junctions. Sci. Rep. 5, 12826 (2015).
49. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S.-W. J. S. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63-66 (2009).
50. J. Haeni et al., Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758-761 (2004).
51. S. Wan et al., Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10, 14885-14892 (2018).
52. Y. Zhou et al., Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508-5513 (2017).
53. W. Ding et al., Prediction of intrinsic two-dimensional ferroelectrics in In 2 Se 3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).
54. H.-Z. Lu and S.-Q. Shen, Weak localization and weak anti-localization in topological insulators. in Spintronics Vii. (International Society for Optics and Photonics), 9167, p. 91672E (2014).
55. F. Tikhonenko, D. Horsell, R. Gorbachev, A. J. P. r. l. Savchenko, Weak localization in graphene flakes. Phys. Rev. Lett. 100, 056802 (2008).
56. C. D. Cress et al., Nitrogen-doped graphene and twisted bilayer graphene via hyperthermal ion implantation with depth control. ACS Nano 10, 3714-3722 (2016).
57. Y. Du, A. T. Neal, H. Zhou, D. Y. J. D. M. Peide, Weak localization in few-layer black phosphorus. 2D Mater. 3, 024003 (2016).
58. E. Amaladass, A. Chatterjee, S. Sharma, A. Mani, S. J. M. R. E. Shivaprasad, Weak localization and electron–electron interaction in GaN nanowalls. Mater. Res. Express 4, 095014 (2017).
59. B. Zhao et al., Weak antilocalization in Cd3As2 thin films. Sci. Rep. 6, 22377 (2016).
60. C. H. Naylor et al., Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297-4304 (2016).
61. J. Zeng et al., Gate-tunable weak antilocalization in a few-layer InSe. Phys. Rev. B 98, 125414 (2018).
62. H. Liu et al., Quasi-2D Transport and Weak Antilocalization Effect in Few-Layered VSe2. Nano Lett. 19, 4551-4559 (2019).
63. W. L. Liu et al., Effect of aging-induced disorder on the quantum transport properties of few-layer WTe2. 2D Mater. 4, 011011 (2017).
64. J. M. Woods et al., Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation. ACS Appl. Mater. Interfaces 9, 23175-23180 (2017).
65. M. Gao et al., Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition. Appl. Phys. Lett. 111, 031906 (2017).
66. L. A. Walsh et al., WTe2 thin films grown by beam-interrupted molecular beam epitaxy. 2D Mater. 4, 025044 (2017).
67. J. Li, S. Cheng, Z. Liu, W. Zhang, H. J. T. J. o. P. C. C. Chang, Centimeter-Scale, Large-Area, Few-Layer 1T′-WTe2 Films by Chemical Vapor Deposition and Its Long-Term Stability in Ambient Condition. J. Phys. Chem. C 122, 7005-7012 (2018).
68. Q. J. Song et al., The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy. Sci. Rep. 6, 29254 (2016).
69. F. X. Xiang et al., Thickness-dependent electronic structure in WTe2 thin films. Phys Rev B 98, (2018).
70. X. Liu et al., Gate tunable magneto-resistance of ultra-thin WTe2 devices. 2D Mater. 4, 021018 (2017).
71. S. H. H. Shokouh et al., High-Performance, Air-Stable, Top-Gate, p-Channel WSe2 Field-Effect Transistor with Fluoropolymer Buffer Layer. Adv. Funct. Mater. 25, 7208-7214 (2015).
72. B. Liu et al., Engineering Bandgaps of Monolayer MoS2 and WS2 on Fluoropolymer Substrates by Electrostatically Tuned Many-Body Effects. Adv. Mater. 28, 6457-6464 (2016).
|